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Abstract. Over the last years, there has been a considerable devel-
opment in the field of vehicular communications (VC) so as to satisfy
the requirements of Intelligent Transportation Systems (ITS). Standards
such as IEEE 802.11p and ETSI ITS-G5 enable the so called Vehicular
Ad-Hoc Networks (VANETs). Vehicles can exploit VANETs to exchange
information, such as alerts and awareness information, so as to improve
road safety. However, due to the expected popularity of ITS, VANETs
could be prone to attacks by malicious sources. To prevent this, secu-
rity standards, such as IEEE 1609.2, are being developed for ITS. In
this work, an implementation of the required cryptographic algorithms
and protocols for the transmission of secure messages according to the
IEEE 1609.2 standard is presented. The implemented security protocols
are then integrated into an existing WAVE-based system and tested in a
real scenario to evaluate the performance impact on safety-related com-
munications, in particular, the overhead that is caused by the process to
sign/verify a digital message.
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1 Introduction

During the past decades, the volume and density of road traffic has increased sig-
nificantly, specially in developing countries such as India and Brazil. According
to [1], in 2010 the number of vehicles in the world has reached to 1.015 billion,
with an approximate ratio of 1:7 cars per person. This significant growth lead to
an increase in number of accidents and traffic injuries, with negative impacts on
the economy and in the quality of people’s lives [2]. In order to tackle this prob-
lem new systems, commonly known as Intelligent Transportation Systems (ITS),
are being developed. In ITS, Dedicated Short Range Communications (DSRC),
on a dedicated spectrum in the 5.9 GHz band, are employed to enable wireless
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communication between vehicles and infrastructure. New applications can then
be developed to exploit vehicle to vehicle (V2V) [8] and vehicle to infrastructure
(V2I) [9] communications to improve road traffic’s safety and efficiency. To this
end, a group of new standards that specifies and standardizes several aspects
of the aforementioned communications (e.g. physical and medium access control
layers, data structures, security, etc.) has been defined. The most well known
standards are the Wireless Access in Vehicular Environments (WAVE) in the
USA and ETSI ITS-G5 in Europe.

Due to the high popularity and scale that ITS can attain, communications in
vehicular networks, more specifically in Vehicular Ad-Hoc Networks (VANETs),
are expected to be prone to security threats since these could be exploited by
people with malicious intents (e.g. redirect traffic flow and spread false informa-
tion etc.). Eavesdropping, message manipulation and replay attacks are examples
of attacks that may target a VANET. Hence, an architecture, a set of interfaces
and services that enable secure V2V and V2I wireless communications are also
included in WAVE and ETSI ITS-G5 group of standards [3].

Security objectives and solutions are well defined for computer-based archi-
tectures in general but for vehicular environments the approach needs to be dif-
ferent due to its distinct properties and requirements [5]. For example, robust-
ness and time constraints in VC are demanding. Vital functions for driving
and/or alerts sent by other vehicles must be correctly processed in real-time;
delays or errors might lead to vehicle malfunctions, bad driving decisions, or
other occurrences that could cause physical damages and injuries. The small
embedded computers found in vehicles may not have the necessary memory and
performance for cryptographic operations without affecting the aforementioned
functions. Moreover, since a car typically has a life-time of at least 10 years,
an upgrade of the computational resources may not be possible and thus, it is
important to assure all security requirements for cars’ life time-frame. This work
aims to assess the requirements of such security mechanisms for vehicular envi-
ronments as well as to evaluate the performance impact that such mechanisms
may induce in communications. To that end, a software implementation of the
IEEE P1609.2 [5], the current security standard embedded in WAVE, will be
presented and evaluated in a real world scenario.

This paper is structured as follows. Section 2 provides a brief overview of main
features of the IEEE 1609.2 standard. Section 3 presents the software implemen-
tation of IEEE 1609.2 algorithms. Section 4 presents the integration of the imple-
mented software algorithms into an existing WAVE-based framework. In Sect. 5
experimental scenarios to evaluate the performance of the implementation are
described and the results presented. The paper concludes with the discussion of
the obtained results in Sect. 6.

2 IEEE 1609.2 Brief Overview

Our implementation is based on the IEEE security standard 1609.2 D17 [6].
The required algorithms that the standard forces to be used in order to provide
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adequate security are the public key algorithms based on elliptic curves. The only
symmetric algorithm that the standard refers is the AES-128 to be used with
the ECIES public key algorithm. Therefore the standard leads to the following
specification in terms of security algorithms:

– Digital Signatures using ECC over prime fields, ECDSA with NIST Fp curves;
– Encryption using ECC, ECIES;
– Hash Algorithms - SHA-1 and SHA-256;
– Symmetric scheme AES.

The ECDSA should support a 224-bit and a 256-bit key, the ECIES a 256-bit
and the AES a 128-bit key implementation. The standard also refers the creation
of specific certificates called WAVE-Certificates which are more compact for
performance reasons. Although this is the most recent standard for security in
VC it is very poor regarding its content. Most of the topics are still open, such as
how certificates should be shared among elements on the road and which are the
secure protocols to correctly use with the ECIES and AES algorithms. The main
focus of this standard is to allow authenticity by using the ECDSA algorithm.

3 IEEE 1609.2 Implementation

3.1 System Architecture

In this section, a software implementation of the security services is proposed.
C programming language was chosen due to its performance and available open-
source libraries. OpenSSL [4] was picked as the auxiliary library to implement the
security services and the cryptography engine since it is a free and open-source
c/c++ library tailored for cryptographic operations and algorithms.

The implementation architecture was divided into 3 main modules: one to
handle all the secure protocols, another responsible for the cryptographic algo-
rithms and finally, one containing all the secure keys and manufacture values.
The module that deals with security protocols handles requests and interprets
the responses from the cryptography engine. It is also responsible for the requests
to the locally stored keys and provides them to the cryptographic engine. This
module is the interface between higher layers (e.g. applications) and the process
of securing data. The private and public keys, along with certificates, are stored
in the module that contains all the manufacture values and secure keys. In
addition to these 3 modules, a Global Positioning System (GPS) module was
used to support the application by providing location and time information.
The proposed security model is based on the conceptual security model referred
in [7] which is illustrated in Fig. 1. The engine which performs all the crypto-
graphic algorithms was implemented with the OpenSSL library and it is capable
of performing Elliptic Curve Digital Signature Algorithm (ECDSA) 224 and 256,
ECIES, Hash algorithms, certificate generation and verification.
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Fig. 1. Security model

Software Resources: The following set of software and libraries were used in
the implementation.

Hash Table: A hash table is an abstraction of a common array in which contents
can be accessed using keys instead of indexes. These tables allow unordered data
to be searched and accessed very quickly.

Serialization: Serialization is the process of transforming data structures into
a buffer of data, suitable for storage or transmission (the reverse process is also
possible). This serialization mechanism is used to process structures and packets
defined by the 1609.2 standard.

Sockets: When the connection between two programs or two machines is needed,
the use of a mechanism called sockets can be used. Sockets will be used to
interconnect certain software processes as well as the security module with the
existing WAVE-based system.

GPSd: The GPSd is a daemon for GPS devices which interacts with various
GPS brand devices through Universal Serial Bus (USB) serial interface enabling
users to easily interact with different GPS devices and obtain GPS information.
The GPSd is used in this implementation in order to get the time stamp and
location to be inserted in the 1609.2 secure packet.

Cryptographic Material: The keys and certificates that should be inserted
into the On Board Unit (OBU) are referred as crypto-material and are stored
in manufacture time. We assumed to have a fully Public-Key Infrastructure
(PKI) deployed, thus, algorithms to share certificates and manage certificate-
revocations were not considered. Each car has a 224-bit and a 256-bit key-pair
length and a certificate which can be chosen depending on the required algo-
rithm. Thus, in this implementation, each vehicle contains the following crypto-
material:
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– A private and public key associated with the vehicle;
– A certificate containing the vehicle public key;
– The certificates that belong to all other cars.

Certificate hashes are included in the transmitted messages so as to avoid
including the entire certificate. The SHA-256 is the chosen algorithm to perform
this operation, but instead of adding the entire hash (256 bit) to the packet only
the 8 less significant bytes are added [6]. Each car also contains a table of hashes,
identifying all the stored certificates and its corresponding hash.

Data Flow: The way the signature generation/verification process works is
defined by several services that handle multiple protocols. Different types of mes-
sages are going to be signed depending on the type of information that is going
to be sent over the network. Each time a connection is requested to the security
services, the flow of data is different depending on whether the request is to sign
or to verify a message. The program starts by trying to establish a connection to
the GPSd Daemon and after it is connected it creates a client/server connection
with the facilities layer. Then the system awaits the reception of a message. As
soon as it is received, its contents are analysed and a process to verify or sign
the message is performed. The message is then returned to the facilities layer
and the system stays again waiting for new messages. The process to create the
signature generation or signature verification of a message is detailed in Fig. 2.
There are two important functions defined by the IEEE 1609.2 Standard [6],

Fig. 2. Messages’ signature generation and verification process
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the WME SEC SIGN DATA and the WME SEC VERIFY DATA, which are
responsible to handle the protocols to sign or verify the messages correctly.
These functions access the GPS data and retrieve the keys.

3.2 ECDSA Implementation

The ECDSA algorithm was implemented in C programming language using the
OpenSSL library.

Open-SSL API: In this section, the OpenSSL library which performs the
required cryptographic algorithm with the specific curves is explained.

Key Generation: The key generation process is not ECDSA specific and it is
generated in the following way [4]:

Algorithm 1. ECDSA Key generation
EC KEY *eckey = EC KEY new;
if (eckey == NULL) then

{Handle Error}
else

EC GROUP *ecgroup = EC GROUP new by curve name(int nid);
if ecgroup == NULL then

{Handle Error}
else

int set group status=EC KEY set group(eckey,ecgroup); /*Return 1 for suc-
cess*/
if set group status != 1 then

{Handle Error}
else

int gen status = EC KEY generate key(eckey); /* Return 1 for success*/
if gen status != 1 then

{Handle Error}
end if

end if
end if

end if

The NID value that is assigned in the function EC GROUP is the name of the
curve that is used to create the Elliptic Curve Group, which in this case are the
NIST prime curves defined respectively by the following names: NID secp224r1
and NID secp256k1 [4]. The EC KEY *eckey is a structure that is composed
of parameters that define the type of key generated along with the private and
public key. It’s structure is defined bellow, and when the EC KEY new(*void)
is called; it is created the following way:
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– eckey→ version = 1;
– eckey → group=NULL;
– eckey → pub key=NULL;
– eckey → priv key=NULL;
– eckey → enc flag=0;

– eckey → references=1;

– eckey → method data=NULL;

– eckey → conv form=POINT

CONVERSION UNCOMPRESSED;

Signature Generation: For the signature generation, considering that the pri-
vate key is already generated, and apart from the data processing, it is only
needed to call the following Open-SSL function:

Algorithm 2. ECDSA Signature Generation
ECDSA SIG * = ECDSA do sign(const unsigned char *dgst, int dgst len, EC KEY
*eckey);

This function has as return value the signature that was generated for the
input data, with twice the size of the key length used in the ECDSA algorithm.

Signature Verification: The verification of a signature is composed of several
steps that must be taken into consideration to make a verification with OpenSSL:

Algorithm 3. ECDSA Signature Verification
EVP PKEY pk = EVP PKEY new();
EC KEY publickey;
pk = X509 get pubkey( X509 );
publickey = EVP PKEY get1 EC KEY(pk);
int ECDSA do verify(const unsigned char dgst, int dgst len, const ECDSA SIG sig,
EC KEY eckey);
EVP PKEY free(pk);
EC KEY free(publickey);

The return value from the ECDSA do verify function determines if the veri-
fication was a success (return value = 1), failure (return value = 0) or an error
occurred (return value = −1).

Certificates: The IEEE 1609.2 Standard defines the WAVE-Certificates which
are a special type of certificates for Vehicular Communications. As PKI was
not implemented, the standard certificates generated using OpenSSL were used.
The used certificates are encoded in a specific format (X.509) and their size
can vary, depending on the key length used for the public key algorithm, on
the size of identification and on some optional values. In this implementation,
the certificates had approximately 956-bytes which are too big when compared
to the expected WAVE Certificate size of about 120-bytes [5]. An application
to generate private and public keys together with the respective certificate was
implemented separately to support the main application that makes use of this
cryptographic material.
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3.3 Implementation of Secure Protocols

So far the cryptographic engine supported by OpenSSL libraries is able to per-
form all the required algorithms from the standard. As already mentioned, a
cryptographic engine is not enough if it is not strongly supported by interface
protocols. The IEEE 1609.2 D17 Draft Standard defines these protocols to use
with the ECDSA algorithm. These protocols are handled by the Wave Manage-
ment Entity (WME), which is responsible for the handling of data from higher
layers. The WME also makes requests to the security module to ask for secure
data. Secured data is sent over the network within a secure packet structure
defined by IEEE 1609.2. Its structure is composed of multiple sub-structures
as it is shown in Fig. 3. Figure 4 illustrates the implemented protocols for the
signature generation and verification.

Fig. 3. 1609.2 secure packet struct

4 Integration with WSMP and Facilities Layer

After the security services have been developed there was the need to integrate
this work with other applications such as the WAVE Short Message Protocol
(WSMP) and the facilities layer in order to have a full system working. Sockets
were used to interconnect the different applications and create an architecture
capable of generating messages, secure them and communicate through the Ded-
icated Short Range Communications (DSRC) platform IT2S developed in the
IT (Telecommunications Institute) in the scope of the FP7 project ICSI.

A Cooperative Awareness Message (CAM) message is generated by the facil-
ities module with all the information gathered from the vehicle: speed, location,
direction and all types of valuable information. This message is sent to the secu-
rity services which receives the message and digitally signs its content with its
private-key. After the message gets secured in the format of a 1609.2 packet, it
is sent back to the facilities module which forwards its content to the WSMP.
The WSMP generates the WSM packet and puts in its data field the 1609.2
packet received from the facilities module. This packet is then transmitted over
the DSRC platform.
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Fig. 4. Signature generation and verification protocol

Table 1. Flow detection and mitigation time

Specification Personal laptop Raspberry-Pi

CPU Intl. Pentium 1.46 GHz 700MHz Low Power

Instruction-Set 32-bits 32-bits

Memory 3 GB 512MB SDRAM

OS Ubuntu 12.04 Arch-Linux

5 Experimental Evaluation

This section presents a experimental performance analysis of the implemented
architecture. The main focus of these experiments was to benchmark the overall
system that provides authenticity with ECDSA. In the first approach, the system
was benchmarked in a laptop and later in a Raspberry-Pi which was the option
as the on-board computer for a real vehicular communication system. The choice
to use two computers in the experiments was to clearly understand how much
computational power might be needed to achieve a good performance of the
system. Table 1 provides hardware and software comparison between the two
used machines. The following set of experiments were carried out:
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– ECDSA algorithm timing analysis on Laptop with increasing random payload;
– ECDSA algorithm timing analysis on Raspberry-Pi with increasing random payload;
– Security Implementation timing analysis on Laptop with CAM Messages as payload;

– Security Implementation timing analysis on Raspberry-Pi with CAM Messages as

payload.

5.1 ECDSA Timing Performance Analysis

For the analysis of the execution times regarding the ECDSA algorithm, an
application capable of signing and verifying messages without all the overhead
caused by the security services was developed. In order to calculate the execution
time of the algorithm to be evaluated, a processor tick timer was inserted in the
code to count the number of ticks that each function runs. Then the execution
of the code was analysed for the ECDSA NIST curve P224 and P256 with the
payload varying from 10-bytes to 2000-bytes. Within each payload, the code runs
1000 times in order to calculate the mean execution time for the given payload
size. The payload was randomly generated, containing only alpha-numeric values.
In Table 2 summary of the mean execution time for both key algorithms and
computers is presented.

Table 2. Experiment results for ECDSA 224 and 256

Computer Algorithm Sign [ms] Signature/s Verify [ms] Verifications/s

Laptop ECDSA P256 2.339 411 2.8676 349

Laptop ECDSA P224 1.8958 527 2.222 450

Raspberry-Pi ECDSA P256 11.3833 88 13.3581 75

Raspberry-Pi ECDSA P224 8.7552 114 10.2238 98

It is important to mention that all these values only represent timings of
the OpenSSL signature generation and verification functions. For the OpenSSL
functions to sign and verify, an ECDSA signature or verification requires that
a key-pair must be previously generated or loaded and a hash function must
be applied to the payload. These values do not represent the overall system
execution times but they were taken to benchmark the OpenSSL library.

5.2 Integration of CAM, WSMP and Security

Here we present an analysis of timings with integration of WSMP, the facili-
ties application and security. This step is important to better understand how
the system handles the increase payload, the time for the whole process, the
signature generation, the signature verification, loading the certificates and the
hashing of data. We used a real testbed having all the defined modules inte-
grated and transmitting the CAM messages at the rate of 10 Hz. Ten thousand
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messages were sent at this rate to analyse the system performance. Two differ-
ent size of messages were generated, one with 53 bytes and another one with 67
bytes. In Fig. 5, a comparison between signing and verifying for both messages
is presented. The mean time to sign and to verify a message regardless of the
size (53 or 67 bytes) is 3:8504 ms and 4:4157 ms respectively. Figure 5 shows that
the times to perform a signature generation and verification are very high with
the following mean times: signature generation: 21:7615 ms and signature veri-
fication: 25:3628 ms, considering both the 53 and 67 byte payload of the CAM
message (Fig. 6).

Fig. 5. CAM timings obtained on laptop

Fig. 6. CAM timings obtained on Raspberry Pi
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6 Conclusions

The main focus of this work was to analyse the requirements and how much effort
has to be applied to provide the adequate security requirements for a vehicular
network. The proposed software implementation was based on the IEEE 1609.2
TM/D17 standard and the entire system was evaluated in a real world scenario.
Performance tests show that the system is capable of performing 223 and 39
signature verifications per second when running on a conventional laptop or
Raspberry-Pi respectively. Since in WAVE, cars are typically beaconing at 10 Hz,
the maximum number of cars in the neighbourhood possible to verify are 22 using
laptop and 4 usingRaspBerry-Pi respectively.However in realworld scenarios, spe-
cially in highway and congestion scenarios, the number of vehicles in a given area
can reach to hundreds. Thus, it can be concluded that the performance of a pure
software implementation of security services is insufficient for real world use-cases.
As future work, the study of other algorithms besides the ones referred in the IEEE
1609.2 TM/D17 Standard should be analysed. Also a hardware solution based on
FPGA could be developed to perform some of the arithmetic operations required
by the cryptographic algorithms. The hardware module can be integrated with the
OpenSSL library allowing some hard operations to be performed on hardware.
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