
Enabling Dynamic Reconfigurability
of SDRs Using SDN Principles

Prithviraj Shome1, Jalil Modares2, Nicholas Mastronarde2(B),
and Alex Sprintson1(B)

1 Department of Electrical and Computer Engineering,
Texas A&M University, College Station, USA

{prithvirajhi,spalex}@tamu.edu
2 Department of Electrical Engineering, University at Buffalo, Buffalo, USA

{jmod,nmastron}@buffalo.edu

Abstract. Dynamic reconfiguration and network programmability are
active research areas. State of the art solutions use the Software
Defined Networking (SDN) paradigm to provide basic data plane abstrac-
tions and programming interfaces for control and management of these
abstractions; however, SDN technologies are currently limited to wired
networks and do not provide the appropriate abstractions to support ever
changing wireless protocols. On the other hand, the Software Defined
Radio (SDR) paradigm enables complex signal processing functionality
to be implemented efficiently in software, instead of on specialized hard-
ware; however, SDR does not cater to the demand for adaptive radio
network management with respect to changing channel conditions and
policies. To overcome these limitations, we present CrossFlow, a princi-
pled approach for application development in SDR networks. CrossFlow
defines fundamental radio port abstractions and an interface to manip-
ulate them. It provides a flexible and modular cross-layer architecture
using the principles of SDR and a mechanism for centralized control using
the principles of SDN. Through the convergence of SDN and SDR, Cross-
Flow works towards providing a target independent framework for appli-
cation development in wireless radio networks. We validate our design
using proof-of-concept applications, namely, adaptive modulation, fre-
quency hopping, and cognitive radio.

Keywords: Software-defined networking · Software-defined radios ·
Dynamic reconfigurability · OpenFlow · GNU radio

1 Introduction

With ever-changing wireless standards and protocols, there has been a conscious
shift towards a programmatic approach for designing and implementing wireless
radios. This has led to a tremendous interest in Software Defined Radios (SDR).
SDR is a powerful concept in which filters, amplifiers, modulators and other
complex signal processing blocks are realized in software, instead of on special-
ized hardware. As the task of signal processing is handed over to software, it
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Y. Zhou and T. Kunz (Eds.): ADHOCNETS 2016, LNICST 184, pp. 369–381, 2017.

DOI: 10.1007/978-3-319-51204-4 30



370 P. Shome et al.

is possible to use general purpose hardware, connected to an RF front end, to
create powerful and highly flexible radios.

While the SDR paradigm has revolutionized the design of wireless radios,
it does not provide an efficient method to control a network of SDRs. Since
SDRs can be reconfigured to provide a wide variety of radio functionalities, it
would be highly desirable to have a consistent interface to expose the SDR’s
functional modules to the network application developer. As modules can be
added, removed or changed any time, such an interface framework must be able
to adapt to these changes, report events to the application, and allow control of
various constituent modules while hiding their complexity from the application
developer. This level of abstraction is necessary because, as the network grows
and becomes more heterogeneous, it is impossible for the application developer to
keep track of low-level details. Here, by the notion of heterogeneous networks, we
take into consideration a network containing both wired and wireless devices.
Hence, the architecture should enable network control, meet requirements of
users, and abstract away the details of the implementation.

In order to provide abstractions taking into account the above considerations,
we use the concept of Software Defined Networking (SDN). SDN defines abstrac-
tions that represent data plane components and the interface to control and
manage these abstractions. These primitives (including asynchronous callback
function event reporting) enable an application developer to obtain a logically
centralized view of the network. The application developer can then dynamically
adjust rules to reflect changing network conditions and requirements.

In this paper, we aim to integrate SDR and SDN to provide a principled
approach for developing a consistent interface to manage underlying abstractions
of SDRs. We build upon the abstract model presented in our previous paper [1],
where we described a monolithic architecture for wireless radio port abstraction.
In the current paper, we go beyond that and broaden the design space to provide
a modular design, which is in line with the design principle of SDR. This also
enables an integration of both wired and wireless networks which can be managed
in a programmatic manner, thereby enabling development of key applications
catering to a heterogeneous network. We call our platform CrossFlow. Some
network applications that we envision can leverage CrossFlow include, but are
not limited to, the following:

1. Physical layer adaptation including (i) frequency hopping to resist nar-
rowband interference and prevent unauthorized interception; (ii) transmission
power control to maintain a target link quality while reducing interference to
other users and/or extending battery life; (iii) adaptive modulation and coding
to trade-off throughput and communication reliability and adapt to channel
conditions (e.g., pathloss and interference).

2. Quality of service (QoS) provisioning to provide QoS policies imple-
mented through medium access control, throttling, admission control,
scheduling, and error control techniques (e.g., ARQ and FEC).



Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 371

3. Adaptive routing to allow a CrossFlow controller, with its global view of the
network, to dynamically switch between different routing protocols depending
on the network conditions and the application constraints.

4. Self-healing network to allow the CrossFlow controller to deploy fault man-
agement applications based upon self-healing mechanisms.

5. Cross-layer control to allow joint optimization of parameters, algorithms,
and protocols at all layers of the protocol stack.

We use the generalized model of SDN introduced in [2] as a template for
defining the abstractions and their features discussed above. We also build upon
the concept of wireless radio ports as discussed in [3]. This abstraction is com-
posed of a number of smaller abstractions, one for each processing block, so that
fine-grained control of the processing capabilities of a radio device is provided to
application developers without exposing its intricate details. This enables manip-
ulation of critical physical, data link, and network layer properties through var-
ious well defined interfaces. Thus, using the architecture of CrossFlow, we can
build applications across all layers of the network stack.

For validation purposes, we use the popular GNU Radio [4] framework, which
provides a modular, open-source Digital Signal Processing (DSP) software envi-
ronment for SDRs. GNU Radio modules are written in C++ and provide a
mechanism to connect and manage data between them. A Python wrapper ties
these blocks together to implement applications. We run GNU Radio on a host
PC connected (via Ethernet) to a Universal Software Radio Peripheral (USRP)
N210 device from Ettus Research, and we also run CPqd SoftSwitch software [5]
as a separate module. CPqd SoftSwitch serves as a switch agent interacting
between the SDN controller and GNU Radio modules. This is done through mes-
sage extensions which we will discuss in subsequent sections. We also develop
three proof-of-concept applications to validate our design principles: frequency
hopping, adaptive modulation, and cognitive radio.

Our contributions can be summarized as follows.

1. We propose a framework that provides a uniform and consistent view of SDRs,
so that a network of SDRs can be managed in an efficient manner.

2. We extend the SDN model with message extensions to provide support for
wireless radio interfaces.

3. We provide sample applications using the framework for validation.

The rest of the paper is organized as follows. In Sect. 2, we review the related
work done in this area. Section 3 describes the CrossFlow architecture with its
SDN extensions. Section 4 describes a proof-of-concept implementation of three
applications using our framework. Section 5 concludes the paper.

2 Background and Related Work

Software Defined Networking. Network reconfigurability is a major challenge
in the networking industry. The explosion of mobile devices and cloud services



372 P. Shome et al.

has increased the need for on-demand installation of services and reconfigura-
tion of flow rules according to changing traffic patterns. In addition, network
elements like routers and switches have their own unique interfaces and as such
management of network components is a source of concern for network applica-
tion developers. As the network grows, this complexity increases exponentially
and rolling out new services becomes a tedious and complicated process.

Software Defined Networking (SDN) is an architecture which tries to address
these challenges by decoupling the control and forwarding functions. This
enforces abstraction of underlying implementation and enables applications or
network services to be developed using the abstractions. This simple and elegant
design also provides applications a centralized view of the network. As a result, it
has sparked tremendous research interest in providing a scalable, secure and pro-
grammatic approach towards the challenges discussed above. While SDN is a rev-
olutionary approach, it is still mainly geared towards wired networks. Through
our previous work, ÆtherFlow [3], we tried to provide a protocol independent
approach for bringing wireless into the SDN model. In this paper, we go a step
further and try to provide a mechanism for dynamic radio resource management
for SDRs to obtain true network visibility in a heterogeneous network.

GNU Radio framework. GNU Radio [4] is a free and open-source framework
that provides signal processing functionality to implement SDRs. The main con-
stituents of the framework are basic blocks which perform distinct signal process-
ing functions. GNU Radio enables the composition of these blocks to synthesize
new radio functionality on general purpose hardware, but it is not suitable for
developing applications to control a network of SDRs. This is because each block
exposes its own set of interfaces which does not scale with increasing numbers
of radios in the network. In this paper, we provide uniform interfaces to control
and manage these processing block abstractions, so that an application developer
does not need to handle every block’s unique interface characteristics.

Aside from GNU Radio, the idea of providing a programmable wireless data
plane has been implemented in [6,7]. These papers provide modular blocks and
focus on real-time guarantees for processing signals. But, like GNU Radio, they
do not provide any logical interface to control a network of such programmable
devices. The paper [8] deals with centralized control of devices but it focuses
mainly on LTE networks. Our paper is orthogonal to these works as we pro-
vide a mechanism for centralized control while making the exposed interfaces
protocol independent. The combination of SDRs and SDN has recently been
used in a variety of contexts [9–12]. In [11], SDR and SDN are used to create a
testbed for LTE technologies while [9,10] focus on integration of SDR and SDN
for 4G/5G technology. In [13], an SDR model for management of interference
in dense heterogeneous networks is proposed while [12] developed a jamming
architecture using SDN and SDR principles. These papers provide distinct solu-
tions for various scenarios but do not provide a generic framework for handling
various protocols in a principled manner.

The most closely related work to CrossFlow is the RcUBe framework [14],
which provides structured abstractions for decision, control, data, and register



Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 373

Fig. 1. Abstraction model of CrossFlow

planes of SDRs. A key difference between CrossFlow and RcUBe is that Cross-
Flow allows SDRs to be managed by the same SDN controller as other network
devices, thereby enabling unified control of a heterogeneous network.

3 CrossFlow Architecture and Design

In this section, we motivate and describe the architecture and design of Cross-
Flow. In Sect. 3.1, we introduce the proposed data plane abstractions. Then, in
Sect. 3.2, we describe how we extend the OpenFlow protocol to accommodate
CrossFlow messages.

3.1 Data Plane Abstractions

We extend the data model proposed in [2] to create an abstraction model for the
CrossFlow framework, which is displayed in Fig. 1. We build upon the wireless
radio port concept proposed in [3] to create a new layer of abstractions. This
layer of abstractions exhibits a composition or has-a relationship with the wire-
less radio port abstraction (i.e., the wireless radio port has a sink, modulator,
or channel coder). This means that the blocks of this layer are the objects or
members that comprise the wireless radio port. These blocks are derived from
the most commonly used processing blocks in GNU Radio [4]. This abstract
wireless radio port model serves the following design vision:

– It allows visibility into the signal processing blocks from an application point
of view, without going into implementation details.

– It allows for the development of an event driven framework for radio operation.
– It could enable composition of blocks to implement new functionality. For

future work, we envision that a network application could specify which blocks
to connect for a specific wireless port instance, and the internal framework
could handle the implementation.

In this paper, we focus on the first two bullets. Specifically, we develop an
abstract interface to enable event-driven dynamic configuration of a fixed set



374 P. Shome et al.

of signal processing blocks at run-time. In order to change a signal processing
block’s parameters, the application needs to send a <command, value> tuple in
a message. For queries and receive event responses, it registers for events with
each block and, when an event occurs, appropriate callbacks are invoked. One of
the main requirements of the CrossFlow model is that each abstraction should
implement four types of interfaces as proposed in both [2,3], namely, capabilities,
configuration, statistics, and events. Thus far, CrossFlow provides the interfaces
for a wireless radio port abstraction with two processing blocks: Sink and Mod-
ulators. However, we plan to extend it to include the other processing blocks
shown in Fig. 1. The Sink abstraction allows the SDN controller to manage the
signal sinks which can be a USRP device, file, or a socket, while the Modulators
abstraction allows management of modulation schemes (e.g., BPSK, QPSK, and
8PSK).

The interfaces for Sink and Modulators are categorized as follows:

1. Sink:
– Capabilities: The interface allows the SDN controller to query the capa-

bilities of sinks such as: (i) Type of sink (USRP, socket, etc.); (ii) Channels
supported; (iii) Center Frequency; and (iv) IP address.

– Configuration: The interface allows the SDN controller to configure
properties of signal sinks such as: (i) Gain; (ii) Frequency, and (iii) Sample
rate.

– Statistics: The interface allows the SDN controller to gather statistics for
sinks such as the received signal strength indicator (RSSI).

– Events: The interface allows the SDN controller to take decisions based
upon events such as low or high RSSI.

2. Modulators:
– Capabilities: The interface allows the SDN controller to query the prop-

erties of the modulator block such as: (i) Modulations supported; (ii) Cur-
rent samples/symbol; and (iii) Use of a Gray code indicator.

– Configuration: The interface allows the SDN controller to configure
properties of the modulator block such as: (i) Choice of modulation scheme
(e.g. BPSK, QPSK and 8PSK); (ii) Sample/symbol; and (ii) Use of a Gray
code.

– Statistics: The interface allows the SDN controller to gather statistics for
the modulator block such as: (i) Signal to Noise Ratio (SNR) and (ii) Bit
Error Rate (BER).

– Events: The interface allows the SDN controller to take decisions based
upon events in the modulator block such as: (i) Low or high SNR and (ii)
Low or high BER.

3.2 Message Extensions

CrossFlow uses SDN design principles to control a network of configurable SDRs.
As such, to enable control plane interactions between the SDN controller and
the SDR, we had two options: either we could have implemented our own control



Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 375

protocol to enable their interactions or extend the existing OpenFlow [15] frame-
work. This is because OpenFlow does not natively support wireless features. In
order to enable a cleaner implementation, we decided to extend OpenFlow by
using experimenter messages within the OpenFlow protocol, similar to Æther-
Flow. Experimenter messages are a part of the standard OpenFlow protocol
which provides a mechanism for vendors to include propriety information within
the protocol. This approach has two advantages. First, we do not need to imple-
ment a new protocol for control and data plane interactions. Second, since we are
using experimenter messages to carry CrossFlow messages, the SDN controller
does not need to perform special handling for these messages. This enables the
controller to remain target independent and hence it can handle both wired and
wireless devices. In the current version of CrossFlow, we define three messages:

– Configuration message request: Request for modification of parameters,
such as gain, frequency, SNR threshold, and modulation scheme.

– Statistics message request: Request for statistics, such as SNR and BER.
– Event message response: Response for events, such as low SNR.

4 Proof-of-Concept Implementation

4.1 Illustrative CrossFlow Implementation

In this section, we describe our implementation of adaptive modulation, fre-
quency hopping and cognitive radio applications using the CrossFlow frame-
work. For illustration, we implement our model on a USRP N210 SDR from
Ettus Research. We use the CPqD Softswitch [5] (ofsoftswitch) software as
the switch agent in the SDN model. Its main functionality is to enable com-
munication between GNU Radio and the python based Ryu SDN controller.
As described in previous sections, the applications will send messages to the
processing blocks, e.g., to configure them. The ofsoftswitch then forwards this
request to a centralized CrossFlow Hub inside the GNU Radio domain.

There are four main components (blocks) in the illustrative CrossFlow mod-
ule that we implement in GNU Radio, namely, the CrossFlow Hub, the Modu-
lation Controller (Mod Controller for brevity), the SNR Monitor and the USRP
Controller (see Fig. 2).

– The CrossFlow Hub is the interface between the Modulation (Mod for brevity)
and USRP controllers in GNU Radio and the Ryu SDN controller. The
CrossFlow Hub and the Ryu SDN controller communicate via packet data
unit (PDU) socket. The CrossFlow Hub is responsible for receiving commands
from ofsoftswitch (or any other compliant interface), interpreting the com-
mands, and forwarding the commands to the appropriate controller block (i.e.,
the USRP or Mod controller in our implementation). It is also responsible for
receiving information from different controller blocks and sending information
to the Ryu SDN controller. The CrossFlow Hub has in/out ports to send com-
mands and receive information to/from the GNU Radio controller blocks. It
also has in/out PDU ports for interfacing with Socket PDU.



376 P. Shome et al.

BPSK

QPSK

8-PSK

USRP
Controller

Data flow
Control flow 
(Event/ Config /Stats )

CrossFlow
Hub

USRP 
Sink/

Source

Switch Agent

Ryu OpenFlow Controller

Control 
Socket

GNU Radio Domain

Modulation Bank

Control Plane

Switch 
Datapath

OpenFlow 1.3 
Software Switch

Data 
Socket

M
od

 
C

on
tro

lle
r

SNR 
Monitor

Fig. 2. Transmitter implementation diagram of CrossFlow with two processing blocks:
Sink and Modulators

– The Mod Controller is responsible for receiving commands from the
CrossFlow Hub, and selecting the appropriate modulation scheme from the
modulation bank. For illustration, we include three modulation schemes
(BPSK, QPSK, and 8PSK); however, thanks to the modular design, we can
easily add more schemes. The Mod Controller can also feedback information
to the Ryu SDN controller about the modulation scheme that is currently in
use and the number of modulation schemes available in the modulation bank.

– The SNR Monitor is responsible for monitoring the SNR level and generating
an event in case the SNR level falls below a certain threshold, which can
be configured by the application. Currently the framework uses the existing
SNR probe of GNU Radio, which supports four SNR estimators for M -PSK
modulated signals. This monitoring block is also responsible for relaying the
SNR statistics back to CrossFlow Hub in response to a SNR statistics query
generated by the application.

– The USRP Controller is responsible for controlling different RF parameters
of the USRP Transmitter/Receiver based on commands from the CrossFlow
Hub. In our proof-of-concept implementation, we control the carrier frequency
and the power of the signal. It can also feedback information to the CrossFlow
Hub about the current RSSI, SNR, carrier frequency, power, etc.

Although our illustrative implementation only has three controllers (facilitating
abstraction of the USRP Sink/RF implementation, SNR estimation, and the
adaptive modulation implementation), additional controllers can be easily added
to support new functionalities and abstractions.



Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 377

Table 1. Variation of the SU’s SNR and PER as a function of the PU’s normalized
transmission power. The SU transmits at a fixed rate of 1 Mbps.

PU’s normalized TX power SU’s packet error rate SU’s signal-to-noise-ratio (dB)

0 0.15 % 5.8553

0.09 6.34 % −0.2983

0.14 19.89 % −0.9483

4.2 Example Applications

Frequency Hopping Application: Frequency hopping is a technique of trans-
mitting radio signals by spreading the signal over a sequence of changing fre-
quencies. It can be used against jamming and for protecting against unauthorized
eavesdropping. In our implementation, the Ryu SDN controller simply issues a
GNU-CONFIG-FREQ command with the desired frequency and pushes this
configuration to the device. As shown in Fig. 2, the ofsoftswitch receives this
command and forwards it to the GNU Radio domain. The centralized CrossFlow
Hub inside the GNU Radio domain processes this request and issues appropriate
commands to the USRP Controller, which ultimately signals the USRP block to
tune to the requested frequency.

Adaptive Modulation Application: Adaptive Modulation is a technique
where the modulation is changed according to the conditions of the channel.
There are various estimators which are used for obtaining channel quality. These
can be based on SNR, BER, or other environment specific parameters. Sim-
ilar to the frequency hopping application, the Ryu SDN controller issues the
GNU-CONFIG-MOD command with the appropriate modulation scheme (e.g.,
BPSK, QPSK, or 8PSK) and forwards the request to the device. The request
ultimately reaches the Mod Controller, which is a multiplexer block that selects
the requested modulation scheme as shown in Fig. 2.

Cognitive Radio Application: We build upon the frequency hopping appli-
cation mentioned above to construct a cognitive radio application. Cognitive
radio is a type of radio in which the device is aware of its environment and can
dynamically change its operating parameters like transmission power, frequency,
gain, etc., in response to the environmental conditions. In CrossFlow, we imple-
ment an application that can configure a radio device to switch channels based
upon a low SNR event measured by the device. The experimental setup is shown
in Fig. 3, where we have three USRP N210 devices that act as sender, receiver
and noise source. In our setup, the sender and receiver are secondary users (SUs)
and the noise source is the primary user (PU). We assume that the SUs are fre-
quency agile and can operate at either 910 MHz or 915 MHz. All transmissions
use a 2 MHz bandwidth. Meanwhile, we assume that the PU only operates at
910 MHz. The SUs are set 5 m apart.



378 P. Shome et al.

To/From 
Controller To/From 

Controller 

USRP N210 Noise Source

USRP N210 Sender
Power: 10dB
Amplitude: 0.3

USRP N210 Receiver

Freq: 910 MHz
Power: 10dB
Variable Amplitude

5m Distance

Fig. 3. Setup for cognitive radio application in CrossFlow

Using this setup, we conduct two tests: one to measure the effect of the
PU’s transmission power on the SU’s packet error rate (PER) and SNR at the
910 MHz carrier frequency (measured over 1,000,000 packets transmitted by the
SU at 1 Mbps while the PU operates at normalized transmission powers of 0.0,
0.09, 0.14, where 0.0 indicates that the PU is silent), and another to measure how
quickly the cognitive radio can trigger and respond to a low SNR event (with
normalized PU transmission powers 0.09, 0.17 and 0.22, and SU data rates of
256 Kbps, 512 Kbps and 1 Mbps).

Table 1 shows the PER and SNR values obtained in the first experiment
where the PU and SU transmit on the 910 MHz carrier frequency at the same
time. As expected, the SU’s PER increases and SNR decreases as the PU’s
transmission power increases on the same channel.

In the second experiment, which demonstrates a simple cognitive radio appli-
cation, we assume that the PU is initially silent and that the SU is initially
transmitting in the spectrum “hole” at 910 MHz. Once the PU starts to trans-
mit, the SU experiences a decrease in its SNR. When the SNR falls below a
specified threshold (4 dB in our experiment), a low SNR event is triggered by
the SU’s SNR Monitor block and the event summary is sent to ofsoftswitch
through the CrossFlow Hub. This request is then forwarded to the Ryu SDN
controller using the event response message. The application, upon receiving
this message, sends a GNU-CONFIG-FREQ command so that the SU changes
its carrier frequency to 915 MHz to avoid the interference from the PU. The
sequence of actions involved in changing the channel is similar to the sequence
in the frequency hopping application described earlier.

In Fig. 4(a), we show the number of packets that are lost over the course of
time required for the SNR to be sensed below the 4 dB threshold, for the receiver
to generate the low SNR event, and for the Ryu SDN controller to respond by
issuing the GNU-CONFIG-FREQ command, and finally for the transmitter to
switch frequencies. We repeat this experiment three times for each combina-



Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 379

Fig. 4. Packet losses incurred while the SU transitions to the unoccupied channel,
and the associated transition delay, for di erent SU rates (kbps) and normalized PU
transmission powers.

tion of SU data rate (256, 512, and 1024 kbps) and normalized PU transmission
power (0.09, 0.17, and 0.22), and report the average of each group of three mea-
surements in Fig. 4(a). In Fig. 4(b), we report the time that elapses over the
aforementioned sequence of events. We note that this switching time is indepen-
dent of the SU’s data rate and the PU’s transmission power.

5 Conclusion and Future Work

In this paper, we presented a framework for programming a network of soft-
ware defined radios using software defined networking (SDN) principles. The
framework we propose allows adaptive, flexible, and real-time (re)configuration
of software defined radio interfaces from a network controller application. It
streamlines the development of network applications by hiding the low level
internal details of the signal processing pipeline. In order to validate our app-
roach, we also provide three proof-of-concept applications: frequency hopping,
adaptive modulation and cognitive radio. This shows that our design is viable
and can be extended to introduce new capabilities.



380 P. Shome et al.

One of the challenges that we need to consider is in-band control of the radio
devices. Currently we implemented our design using an out-of-band wired control
channel. The CrossFlow framework can easily be extended to enable in-band
control of devices and it will be our next design goal. Another area of focus is the
latency between controller and SDR framework. The issue can be mitigated by
the introduction of distributed control module in SDR. The distributed control
module will allow devices to take local decisions while the centralized controller
is responsible for introducing policies and global management, thereby ensuring
reduced latency.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants No. 1422655, 1423322, by the AFOSR under con-
tract No. FA9550-13-1-0008, and by the Air Force Research Laboratory under Grant
No. FA8750-14-1-0073.

References

1. Shome, P., Yan, M., Najafabadi, J.M., Mastronarde, N., Sprintson, A.: CrossFlow:
a cross-layer architecture for SDR using SDN principles. In: Proceedings of the
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (IEEE NFV-SDN), November 2015

2. Casey, C.J., Sutton, A., Sprintson, A.: TinyNBI: distilling an API from essential
OpenFlow abstractions. In: Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN 2014. New York, NY, USA, pp. 37–42.
ACM (2014). http://doi.acm.org/10.1145/2620728.2620757

3. Yan, M., Casey, J., Shome, P., Sprintson, A., Sutton, A.: Aetherflow: principled
wireless support in SDN. In: Proceedings of the ICNP Workshop on Control, Coop-
eration, and Applications in SDN protocols (CoolSDN 2015) (2015)

4. GNU Radio. http://gnuradio.org/redmine/projects/gnuradio/wiki
5. CPqD OpenFlow 1.3 Software Switch. http://cpqd.github.io/ofsoftswitch13/
6. Bansal, M., Schulman, A., Katti, S.: Atomix: a framework for deploying signal

processing applications on wireless infrastructure. In: Proceedings of NSDI (2015)
7. Bansal, M., Mehlman, J., Katti, S., Levis, P.: Openradio: a programmable wireless

dataplane. In: Proceedings of HotSDN (2012)
8. Gudipati, A., Perry, D., Li, L.E., Katti, S.: SoftRAN: software defined radio access

network. In: Proceedings of the Second Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN 2013 (2013)

9. Cho, H.-H., Lai, C.-F., Shih, T., Chao, H.-C.: Integration of SDR and SDN for 5G.
Access IEEE 2, 1196–1204 (2014)

10. Sun, S., Kadoch, M., Gong, L., Rong, B.: Integrating network function virtualiza-
tion with SDR and SDN for 4G/5G networks. Netw. IEEE 29(3), 54–59 (2015)

11. Mancuso, V., Vitale, C., Gupta, R., Rathi, K., Morelli, A.: A prototyping method-
ology for SDN-controlled LTE using SDR (2014)

12. Corbett, C., Uher, J., Cook, J., Dalton, A.: Countering intelligent jamming with
full protocol stack agility. Secur. Priv. IEEE 12(2), 44–50 (2014)

13. Gupta, R., Bachmann, B., Kruppe, A., Ford, R., Rangan, S., Kundargi, N., Ekbal,
A., Rathi, K., Asadi, A., Mancuso, V., et al.: LabVIEW based software-defined
physical/MAC layer architecture for prototyping dense LTE Networks (2015)

http://doi.acm.org/10.1145/2620728.2620757
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://cpqd.github.io/ofsoftswitch13/


Enabling Dynamic Reconfigurability of SDRs Using SDN Principles 381

14. Demirors, E., Sklivanitis, G., Melodia, T., Batalama, S.N.: Rcube: real-time recon-
figurable radio framework with self-optimization capabilities. In: 12th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pp. 28–36. IEEE (2015)

15. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Computer Communication Review 38(2), 69–74 (2008)


	Enabling Dynamic Reconfigurability of SDRs Using SDN Principles
	1 Introduction
	2 Background and Related Work
	3 CrossFlow Architecture and Design
	3.1 Data Plane Abstractions
	3.2 Message Extensions

	4 Proof-of-Concept Implementation
	4.1 Illustrative CrossFlow Implementation
	4.2 Example Applications

	5 Conclusion and Future Work
	References


