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Abstract. Network simulations play a substantial role in evaluating
network protocols. Simulations facilitate large-scale network topologies
and experiment reproducibility by bridging the gap between analyti-
cal evaluation and real-world measurements. A recent trend in discrete
event network simulations is to enhance simulation realism and reduce
duplicate implementation efforts by maximizing code reuse. Despite such
efforts, it is not yet possible to run arbitrary network applications
in state-of-the-art network simulators. As a consequence, researchers
are required to maintain separate protocol implementations: one for
real-world measurements and one for simulations. We review existing
approaches that maximize code reuse in simulations, compare their lim-
itations, and propose a novel architecture for protocol simulation that
overcomes those restrictions.
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1 Introduction

When developing novel ad hoc networking protocols, extensive evaluation to
gauge their performance and fitness to fulfill use case requirements is an inte-
gral part of the protocol design. The same is true when existing protocols are
to be revised or improved. Arguably, network simulations are among the most
widespread tools used to evaluate protocols for ad hoc networks. Network sim-
ulators strike a balance between the fundamental and asymptotic results that
formal, analytical protocol evaluations can provide and the realism that testbed
implementations on real hardware can provide.

To implement network simulations, the lower layers of the protocol stack
are typically approximated by more or less simplified models, whereas higher
protocol layers are re-implemented to mimic real-world protocol stacks. Clearly,
the physical layer needs to be simulated, and state-of-the-art physical network
models have largely been confirmed by empirical measurements [1,2]. For the
protocol under evaluation, it is desirable that it is evaluated using the same
code that would be used in real deployments; only then can we draw meaningful
conclusions from simulative evaluation results. Designing the protocol layers in
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between is challenging, because they need to operate with the simulated phys-
ical layer while at the same time allowing the protocol under evaluation to be
implemented under realistic conditions.

Today, simulator implementations for intermediate layers are often based on
standards or available specifications, whereas real-world implementations con-
tain further optimizations and extensions that affect performance. For instance,
real-world TCP variants are a complex interaction of several optimizations per-
formed by the operating system’s implementation [3]. Likewise, the most widely
used implementation [4] of Optimized Link State Routing [5], a routing dae-
mon for ad hoc networks, implements non-standard link quality extensions that
drastically improve performance in wireless mesh networks, whereas a state-of-
the-art network simulator’s version is based on the official specification only.

In the worst case, the network system — be it a protocol or an application —
has to be developed twice: once in the simulator and once for real-world deploy-
ment. Such duplicate implementations have several negative implications. First,
the implementations’ behavior may diverge due to implementation differences. In
addition to increased development effort, the differences between the implemen-
tations may invalidate simulation results, since they no longer match real-world
behavior. Second, the choice of a network simulator may require to use a spe-
cific programming language that the development team would not use for real
deployments. Finally, the additional effort slows down the development and eval-
uation of network systems. These and other issues with current simulators have
been acknowledged by the simulation community, spawning a trend to increase
protocol code reuse [3,6-8].

Code-reuse issues are emphasized by the abstraction level of widely used
network simulators, such as OMNeT++ [9] and ns-3 [10]. When developing net-
work protocols for ad hoc networks, researchers interact with artificial interfaces
towards the network, medium access control, and physical layers. We argue that
shifting the abstraction between actual implementation parts and modeled parts
towards the lower layers will provide more realistic simulation results and facili-
tate more widespread code reuse. To do so, we propose to utilize the system call
interface, which is well established in Unix-like operating systems. As ad hoc
network systems often use Unix-like operating systems, the system call (short
“syscall”) interface provides a clear interface to separate real protocol implemen-
tations from simulated parts of the network.

In this paper, we contribute a taxonomy of different abstraction levels for net-
work simulations, which we use to survey existing approaches to achieve more
realistic network simulations. Moreover, we discuss a novel syscall-level approach
to combine the benefits of realistic protocol implementations with those of dis-
crete event network simulations.

We discuss the general role of simulation in network evaluation and introduce
discrete event network simulation in Sect. 2. Section 3 then structures options for
code reuse in network simulations and discusses existing approaches’ advantages
and limitations. We present a less restrictive simulation architecture that maxi-
mizes code reuse in Sect. 4. In Sect. 5 we summarize and conclude the paper.
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2 Discrete Event Network Simulation

When designing or implementing a new network system, verifying correctness
and efficiency is an important but difficult task. A network system is generally
developed with a use-case environment in mind. In an ideal world, the system’s
designer could test her protocol in this exact environment as long and as often
as necessary. In reality, the exact environment is often not available due to prac-
tical considerations such as cost of components or the time it takes to perform
measurements, which is especially true when a large number of systems are
involved. Likewise, real-world measurements are not easily reproducible, since
external influences often cannot be controlled.

For these reasons, several accepted techniques for network system evalua-
tion aim to increase scalability and reproducibility over real-world measure-
ments by controlling external influences to different degrees. The system designer
can use these techniques to evaluate a network system without requiring the
exact deployment environment. Common approaches to evaluation fall in the
categories analytical evaluation, simulation, and measurements using a testbed.
As sketched in Fig. 1, evaluation by analytical evaluation, simulation, and test-
beds typically offer scalability and reproducibility in decreasing order, and they
offer closeness to real-world measurement results, i.e., “realism,” in increasing
order.

The testbed is the method closest to real-world measurements; protocols are
evaluated on real hardware. Testbeds provide partially controlled environments
where measurement time and topology of the nodes are pre-determined, whereas
external interference, for instance, cannot be predicted in the general case. Scala-
bility (i.e., number of nodes, size of topology, number of measurements) is limited
by practical considerations, such as cost of hardware, available space, and the
time it takes to perform measurements. The benefit of testbeds is that results
are close to real-world measurements when the topology resembles the network
system’s use-case environment.

Analytical evaluation is on the opposite end of the spectrum. It involves
finding the right abstractions to formally model a network protocol and its envi-
ronment, and it allows to mathematically assess their interaction. Once such a
model is found, it is generally possible to arbitrarily scale parameters, such as,
number of nodes or size of topology. Realism of analytical evaluation results is
highly dependent on the choice of abstractions, since it is seldom possible to
formalize all facets of a protocol in a tractable analytical model.

From the viewpoint of realism, network simulations fill the middle ground
between analytical protocol evaluation and real-world measurements performed
in a testbed. In comparison to testbeds, network simulations provide better
scalability and reproducibility. Using modern network simulators, it is possible
to simulate hundreds or thousands of nodes in arbitrary topologies and repeat
experiments with fully controlled randomness.

The most common technique for network simulators is discrete event network
simulation. A discrete event network simulator is driven by events, which can
be a timer running out or a packet being received by a simulated network card.
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An important property of discrete event network simulators is that events are
mere points in time, i.e., no time passes during an event. Similarly, no time passes
between events. Instead, the simulator skips to the next event after processing
one event, not simulating anything in between. This approach scales well since
it only requires to process what happens during events. Simulated time in a
discrete event network simulator is different from system time: simulated time
may run faster or slower than system time, depending on the system load of the
machine running the simulator and the simulation’s complexity.

Discrete event simulators facilitate reproducibility: if properly implemented,
running a simulation twice with the same parameters yields the exact same results,
enabling precise debugging of rare corner cases. Randomness in simulations is con-
trolled by the simulator’s (pseudo-)random number generator, which can be ini-
tialized with different seeds to select a statistically meaningful sample size.

From a protocol-implementation perspective, a simulated environment is
therefore different from a real-world environment. When considering code reuse,
we need to carefully consider the effect of discrete event simulation on real-world
implementations. If too many aspects of the implementation are affected by the
simulator interface, code reuse is difficult or impossible, limiting meaningful-
ness of simulation results. If too few aspects are affected, we lose the benefits of
discrete event simulations, foremost its reproducibility.

3 Options for Code Reuse

We have established that finding the right level of abstraction between real-
istic implementations and simulated parts is key to reusable yet scalable and
reproducible network simulations. The level of abstraction is determined by the
extent to which code can be reused between simulations and real deployments.
In this section, we identify different options for code reuse and survey existing
approaches within this structure.
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3.1 Partial Source Reuse

The simplest form of code reuse is what we term partial source reuse. When
the protocol implementation’s programming language is compatible with the
simulator language, it is trivially possible to copy-and-paste chunks of source
code to the network simulator implementation and execute them as part of the
simulation.

For instance, the state-of-the-art discrete event network simulators
OMNeT++ [9] and ns-3 [10] support the C++ programming language for proto-
col simulations. Therefore, C or C++ protocol implementation source code can
be used as part of a simulation. Likewise, existing Java protocol source code can
be used in the JiST/SWANS simulator [11].

There are several software components, however, that need porting or re-
implementation to work in a discrete event simulator:

— real-world socket APIs cannot be used in a simulator; instead, the network
abstractions provided by the simulator need to be used;

— time is different from the system time in a network simulator, so no system
time queries must be made;

— random numbers have to stem from the simulators pseudo-random number
facility exclusively;

— concurrency is often not supported by discrete event simulators, instead the
asynchronous event dispatcher of the simulator has to be used;

— global variables may prevent spawning more than one application instance in
a simulator; and

— likewise, file system operations may conflict when more than one application
instance is simulated.

We conclude that partial code reuse can help alleviate duplicate implemen-
tation efforts, but by no means eliminates them, because all of the above issues
have to be addressed manually.

3.2 Full Source Reuse

Recent research [3,6,8,12,13] has investigated how duplicate implementation
effort can be minimized by increasing code reuse. Here, we discuss approaches
based on sharing the entire source code of a protocol implementation for sim-
ulation and real-world deployment. We distinguish two different approaches for
full source reuse: employing a software compatibility layer and using alternative
compilation methods.

Software Compatibility Layer. A special case of code reuse is the approach
taken by Click [14], where network protocols are implemented in a modular fash-
ion in C++ and a domain-specific router configuration language. Click protocol
implementations can be deployed on real hardware or integrated in a simulator
such as ns-3 [6]. Click’s aim is to find suitable programming abstractions for
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the critical software components listed in Sect. 3.1. The protocol is implemented
against this compatibility layer instead of APIs that are specific to the real world
or simulation environments.

Of course, the Click approach only works when developing a new protocol,
as tight integration with Click is needed. Another restriction is that the compat-
ibility layer can only support those features that all supported platform APIs
provide.

Mayer et al. [13] consider a more lightweight compatibility layer for the
OMNeT++ simulator. Instead of compiling a user space protocol’s sources into
an executable, a shared library is built and dynamically loaded into the simu-
lator. The authors suggest to replace the network functionality with a compat-
ibility wrapper, so that it can quickly be exchanged depending on whether the
protocol is built for real-world deployment or for simulation. Likewise, calls that
query the current time are replaced by pre-processor macros that switch between
simulation time and system time depending on the compilation mode.

Alternative Compilation. Tazaki et al. [15] propose a refined shared library
approach for the ns-3 simulator that, with some restrictions, allows a proto-
col implementation’s sources to run unmodified in the simulator, i.e., without a
compatibility layer. Again, a shared library is built from the implementation’s
sources, as depicted in Fig. 2, and dynamically loaded into the simulator. How-
ever, instead of using a compatibility layer (which requires in-source changes),
calls to the operating system’s standard library are redirected to a wrapper
library. The wrapper library decides whether to pass the call to the operating
system (for most calls), or provide an alternative implementation based on sim-
ulator facilities. For example, a call to the function that returns the length of a
string (strlen) can safely be passed through, as it does not perform input or
output operations, whereas a call to a function that normally returns the current
system time (e.g., gettimeofday) is replaced by a wrapper that returns simu-
lation time. The approach can be used for kernel-space protocols in a similar
fashion [3,7].

Source
Executable Shared library
Operating system Simulator
Deployment Simulation

Fig. 2. Shared library approach
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The shared library approach is the first to allow running unmodified applica-
tions without reducing the reproducibility guarantees provided by discrete event
simulation, but it has restrictions on a conceptual level: compilation to a shared
library requires that the source code is available and in fact can be compiled
into such a shared library. The former is not necessarily true when proprietary
implementations are evaluated and the latter does not usually hold for most
interpreted programming languages and even many mainstream compiled lan-
guages, such as Java or Go.

3.3 Process Reuse

Another approach is to run node processes or even the nodes’ operating systems
via virtualization and solely exchange network traffic between these real processes
and the simulation. In the context of the OMNeT++ simulator, this approach was
first briefly discussed in [13] and later implemented by Staub et al. [12].

The advantage of network traffic exchange between simulation and real
processes is that full code reuse is trivial, since processes run in the same envi-
ronment as they would when deployed. No programming language limitations or
tool chain restrictions apply when the system is implemented as in [12]. Unfor-
tunately, this approach does not maintain perfect reproducibility, because only
network operations are simulated. Processes or operating systems do not run in
the simulated time domain but in their respective system time domain; system
(pseudo-)random numbers cannot be predicted, i.e., reproduced.

4 Leveraging the System Call Barrier

The shared-library approach that we saw in Sect. 3.2 chose the operating sys-
tem’s standard library as the barrier between simulation and a user’s protocol
implementation. What we propose here is to use a lower-level abstraction as
the border between simulation and real-world applications. Operating systems
already provide a natural barrier between user-space and kernel-space that can
only be transgressed via so-called system calls (syscalls).

4.1 The Syscall Interface

An obvious property of the system call barrier is that the operating system
is agnostic towards programming language details: every process, regardless of
whether it is a compiled executable, an interpreter, or a just-in-time compiled
program fragment, uses the same syscalls to interface with the operating system’s
kernel. So the approach supports running all of these protocol implementations,
even proprietary ones, with zero modification, thereby maximizing code reuse.
Techniques to capture and modify system calls, often called syscall wrapping,
have been used before in the security context [16] and for operating system
emulation [17]. To make use of the system call barrier for discrete event network
simulation, it is necessary to filter and selectively re-implement system calls.



Leveraging the System-Call Barrier 187

The Linux operating system kernel version 4.5, for instance, supports a total
of 385 system calls for file manipulation, signal handling, concurrency, socket
operations, and so forth. While this number may appear to be large, most system
calls are rarely used and implementing only a subset would already support
numerous protocol implementations. For example, our experiments show that a
simple web page served by the Nginx web server utilizes 46 distinct syscalls and
the olsrd [4] daemon uses 26 unique system calls when running in minimal mode.
Both implementations invoke largely the same — frequently used — system calls
and jointly require only 51 distinct system calls. Of these commonly used syscalls,
only a fraction needs to be modified during execution, whereas most system calls
need not be modified to support reproducibility in discrete network simulations.
System call groups that can be passed through instead of being re-implemented
include security options, memory manipulation, process manipulation, and most
concurrency operations, since these do not usually involve network traffic or
system time [15].

4.2 Syscall-Barrier Process Simulation

Figure 3 shows an overview of our proposed process simulation architecture: Top-
most are user-space processes, and bottommost is the operating system kernel.
Two components constitute the simulator process in the middle: the discrete
event simulation logic to the right and the syscall wrapper to the left. We pro-
pose to use syscall wrapping, as shown in Fig. 3, to selectively redirect syscalls to
the simulator logic and emulate them there. Non-emulated system calls are for-
warded to the operating system as is. The simulator process thereby implements
a secondary system call barrier to run real-world processes within the simulation
environment. Previous work that uses syscall wrappers for process virtualization
suggests that the syscall barrier’s performance is lower than hardware virtual-
ization as in, e.g., XEN [18]. Dike et al. [17] notes that the performance penalty
is dominated by additional context switches. This factor can, however, be mit-
igated on platforms that provide special operating system support for syscall
wrapping [19,20].

Process Process

Emulated barrier

Simulator process

S} ............................................

Native barrier

Operating system kernel

Fig. 3. Syscall-barrier process simulation
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To illustrate our approach, we discuss how to wrap two example syscalls.
Namely, we discuss two system calls that the OLSR mesh routing daemon issues:
the first system call (a) is mprotect, a system call that changes access permis-
sions on a memory region. The second system call (b) is nanosleep, which causes
the kernel to suspend the calling thread’s execution via a high-resolution timer.
As shown in Fig. 4, (a) is an example for a syscall that can be passed through to
the actual kernel services, whereas (b) is a syscall that needs to be caught and
handled by the wrapper.

Like [17], we assume a Linux system and a syscall wrapper based on the
ptrace framework [20]. The wrapper runs solely in user space and leverages the
ptrace system call to trace protocol processes. ptrace enables syscall inspection
and modification at two points: (1) just before the system call is processed by
the kernel and (2) just after the system call was processed by the kernel, but
before the protocol process is notified. As soon as the mprotect system call (a)
is issued, but before the kernel processed the call, the syscall wrapper would be
notified by the ptrace framework. It can inspect the system call and decide,
based on a lookup table, that mprotect does not affect the network simulation.
The wrapper hands back execution to the kernel, which processes the system
call as usual, and is notified again when the system call’s processing is finished
but before the protocol process is notified. Again, the syscall wrapper continues
execution without modification.

The second system call (b) is nanosleep. Time-related system calls need
embedding in a discrete event simulation environment, so the wrapper intercepts
the call: the syscall wrapper first registers an event with the simulator that noti-
fies the wrapper once the requested simulation time has passed. If operating sys-
tem support is available, the original system call can be skipped altogether [19].
Otherwise, the syscall is replaced by a dummy system call without input or out-
put, such as getpid [17], as indicated in Fig. 4. After the (dummy) system call
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is processed, but before the protocol process is notified, the original system call’s
result is emulated by modifying the protocol processes registers. In particular, the
syscall’s return value is replaced by zero, which indicates success for nanosleep.
Next, the syscall wrapper waits until the event it has registered with the simulator
expires. Once notified that the event has expired, it continues the protocol process.
By following these steps, the nanosleep system call is transparently emulated by
the simulator, replacing system time with simulation time — which is crucial for
experiment reproducibility.

Other system calls can be implemented in a similar fashion. Some syscalls
can be passed through, because they do not interfere with the simulation time.
In some cases, syscalls may be forwarded, but their parameters need to be modi-
fied. Examples are file system operations, where potentially path prefixes should
be modified by the syscall wrapper. Others, such as timing and network inter-
actions, need to be intercepted entirely and handled internally.

4.3 Syscall-Barrier System Simulation

Pushing the border even further towards the operating system level, we can
emulate the whole operating system while maintaining the syscall barrier as the
interface to the network simulator. Normally, this approach would require that
the simulator emulates hardware on which a node’s operating system can run.
Dike et al. [17] shows that instead it is possible and feasible to port an operating
system “to itself” in terms of system calls.

Instead of creating an environment that the virtualized operating system
can run on, the virtualized operating system is ported to run on an existing
system call environment. In theory, we can utilize these findings to run a node’s
operating system and all associated protocol implementation’s processes via the
same interface that we propose in Sect. 4.2 — the system call barrier.

This approach maximizes code reuse: nodes run fully virtualized, running
real-world protocol stacks on all layers above the medium access and physical
layers, which the network simulator models and simulates.

It is an open research challenge to evaluate how a real-world operating system
behaves when running on top of a discrete event network simulator, since time-
related syscalls behave differently in a discrete simulation environment. However,
due to the successful porting of kernel-space UDP and TCP implementations
[3,7], we are positive that this next level of code reuse can be obtained without
much modification to the kernel.

5 Conclusion

During the design and implementation phase of a network system, it is important
to verify the system’s correctness and performance. Simulating a protocol during
the design phase allows to carefully tune parameters and quickly assess a proposed
modification’s performance impact. Unfortunately, with today’s tool support,
it is often required to maintain two separate implementations for simulation and
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real-world deployment. This undermines both correctness — as implementation
differences question simulation results — and efficiency — as two implementations
duplicate development efforts.

We reviewed and structured a number of approaches that maintain the repro-
ducibility and scalability of discrete event network simulation, and at the same
time, improve correctness and reduce duplicate effort by increasing code reuse.
Among those approaches, the recently proposed shared library approach [3,7]
facilitates full source reuse with a state-of-the-art simulator, albeit with a num-
ber of restrictions.

We proposed a system-call barrier design as an alternative abstraction level
to form the border between simulator and protocol stack, i.e., model and real-
world code. Our design has the potential to solve the remaining restrictions
that are inherent to the shared-library approach. It is agnostic to programming
language, it can run compiled, interpreted, or just-in-time compiled code, and it
does not require a modified tool chain nor modified source code. The proposed
design is based on a technique called system call wrapping, which has been used
for security and virtualization previously. We also describe an extended design
that utilizes an operating system’s port to itself to simulate nodes’ operating
systems via the system-call barrier.

We expect that, along with the trend to improve code reuse, the use of
simulation in the evaluation of network systems will increase. It remains to be
seen whether perfect reproducibility can be upheld when modeling arbitrarily
complex systems such as full operating systems without modification, but the
direction is promising and we expect more results from this line of research in
the near future.
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