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Abstract. Most performance metrics in wireless ad hoc networks, such
as interference, Signal-to-Interference-plus-Noise Ratio, path loss, out-
age probability, link capacity, node degree, hop count, network coverage,
and connectivity, are nonlinear functions of the distances among commu-
nicating, relaying, and interfering nodes. A probabilistic distance-based
model is definitely needed in quantifying these metrics, which eventu-
ally involves the Nodal Distance Distribution (NDD) in a finite network
intrinsically depending on the network coverage and nodal spatial dis-
tribution. In general, there are two types of NDD, i.e., (1) Ref2Ran: the
distribution of the distance between a given reference node and a node
uniformly distributed at random, and (2) Ran2Ran: the distribution of
the distance between two nodes uniformly distributed at random. Tradi-
tionally, ad hoc networks were modeled as rectangles or disks. Recently,
both types of NDD have been extended to the networks in the shape of
one or multiple arbitrary polygons, such as convex, concave, disjoint, or
tiered networks. In this paper, we survey the state-of-the-art approaches
to the two types of NDD with uniform or nonuniform node distributions
and their applications in wireless ad hoc networks, as well as discussing
the open issues, challenges, and future research directions.

Keywords: Wireless ad hoc networks · Performance metrics · Distance
distributions

1 Introduction

As one of the most significant applications of wireless communication technolo-
gies, a wireless ad hoc network consists of autonomous or mobile nodes which
communicate with each other without a centralized control or assistance. All
the nodes in the network can transmit, receive and forward messages, and thus
require no support of backbone networks. Therefore, ad hoc networks provide
more robustness and flexibility in the presence of node failures than those requir-
ing infrastructure supports and are quite useful in environmental monitoring,
infrastructure surveillance, disaster relief, battlefield, and scientific exploration.
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To reduce the computational complexity and cost of studies and designs in
wireless ad hoc networks, in addition to using powerful computer-aided design
and analysis tools, the past decades have seen an increasing amount of attempts
focusing on the analytical description of system characteristics and performance
metrics through the modeling and analysis of wireless networks. As one of the
promising tools, stochastic geometry [1] has been widely adopted, where the
node distribution is assumed to follow a Poisson Point Process (PPP) [2–4]
or a Binomial Point Process (BPP) [5–7]. However, the PPP model is inade-
quate/inaccurate in many practical wireless networks where a finite number of
nodes are randomly distributed in a finite area, because it assumes an unbounded
number of nodes and does not take into account the effects of the network
boundaries; and the BPP model can analyze neither the exterior interference at
a reference receiver nor the average performance metrics at any node but only
at a specific reference node. Both models provide us with average results over
time and space, but cannot present performance metrics for a specific network
deployment and/or a time instance [8].

Since most of the performance metrics in finite wireless ad hoc networks are
nonlinear functions of the distances among communicating, relaying, and inter-
fering nodes, probabilistic distance-based model has been extensively studied
and applied as a significant complementary tool to the PPP and BPP models to
quantify these metrics, such as interference [9], Signal-to-Interference-plus-Noise
Ratio (SINR) [10], path loss [11], node degree [10], link/hop distance [12,13], out-
age probability [11], link capacity [10], localization [14], energy consumption [15],
stochastic properties of a random mobility model [16,17], etc. As a result, nodal
distance distributions (NDDs) are eventually involved in such quantifications,
which intrinsically depend on the network coverage and nodal spatial distrib-
ution. Depending on whether one of the communicating nodes in a node pair
is fixed or random, there are generally two types of NDD, i.e., Ref2Ran NDD
from a given reference node to a random node and Ran2Ran NDD between
two random nodes. In addition to the utilization in wireless ad hoc networks,
NDD-based models have also been widely adopted for modeling and analyz-
ing cellular networks [8,18–23]. Therefore, how to effectively obtain the relevant
NDDs is definitely significant to accurately quantify the distance-dependent per-
formance metrics when modeling and analyzing finite wireless networks, which
has attracted plenty of attention in the current literature [11,18–21,24–37].

This paper focuses on the survey of the state-of-the-art approaches to the
two types of NDD as shown in Sect. 2 and their applications in wireless ad hoc
networks as shown in Sect. 3. The relevant open issues, challenges, and directions
are also discussed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 NDDs Associated with Finite Regions

In this section, we briefly survey the state-of-the-art approaches to both Ref2Ran
and Ran2Ran NDDs associated with arbitrary polygons.
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2.1 Ref2Ran NDD

In our technical report [35], we have proposed a systematic recursive approach
to obtain the Ref2Ran NDD from an arbitrary reference node (i.e., anywhere in
the plane) to a random node inside an arbitrary polygon, which eliminates the
inappropriate assumptions and limitations in the previous work that the network
area has to be in certain specific shapes (including squares [18], disks/circles [11],
hexagons [19,20], regular polygons [31], and convex n-gons [30]), and the refer-
ence node has to be inside or on the boundary of the network. Specifically, we first
obtain the Ref2Ran NDD from a vertex of an arbitrary triangle to the triangle
using the area-ratio approach, and then based on which the Ref2Ran NDD from
an exterior or interior reference point to the triangle can be obtained through
decomposition and recursion (D&R) methods. Such NDDs from an arbitrary
reference point to an arbitrary triangle are called Ref2Ran triangle-NDDs.
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Fig. 1. An arbitrary reference point R and arbitrary polygons (unit: m).

Based on the obtained Ref2Ran triangle-NDDs, the distribution of the dis-
tance from an arbitrary reference point to an arbitrary polygon can also be
obtained through a D&R method, since any polygon can be triangulated. If a
reference point R is inside a polygon, the polygon can be triangulated from R
as shown in Fig. 1(a). On the other hand, if R is outside, we can just triangulate
the polygon as shown in Fig. 1(b). Then with a weighted probabilistic sum, the
CDF of the distance distribution from R to the polygon is

F (d) =
K∑

i

Si

S
Fi(d), (1)

where K is the number of triangles generated after the triangulation (K = 6
and 4 for the examples shown in Fig. 1(a) and (b), respectively), Si is the area
of triangle Ti, S is the area of the polygon, and Fi(d) is the CDF of the distance
distribution from R to Ti, which has been obtained already.

It is possible that a subarea of a network area has a higher node density than
other subareas, which is referred to as tiered network structure in this paper, due
to the reasons such as the bottleneck nodes near the hotspot under heavy loads
run out of energy, some nodes are physically damaged in a hostile environment,
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or there are no nodes being deployed in a specific area which needs not to be
monitored. In this case, the above weighted probabilistic sum is still applicable,
but with the weights modified correspondingly due to the node density difference.
Take the tiered structure shown in Fig. 1(c) for example. Assuming the node
density ratio between P1 (the white area) and P2 (the grey area) is λ1 : λ2

(λ1 and λ2 are not 0 at the same time), then the distance distribution from an
arbitrary reference point R to the whole area P3 (P1 plus P2) is

F3(d) =
2∑

i

Siλi∑2
j Sjλj

Fi(d), (2)

where Si is the area of Pi, and Fi(d) is the distance distribution from R to Pi,
which can be obtained by (1). The obtained results have been applied in our
recent work [8] to analyze the outage probability of the macro and femto BSs in
arbitrarily-shaped cells for tiered cellular networks.

The authors in [36] made an algorithmic implementation based on our pro-
posed approach. Instead of using D&R methods, they modified the shoelace
formula to calculate the area of the intersection between the polygon and the
circle centered at an arbitrary reference point R with a radius of d. Then the
probability that the distance from R to a point uniformly distributed at random
within the polygon is no longer than d is the area of the intersection divided
by the area of the polygon. In the modified shoelace formula, the area of the
intersection between the circle and each triangle generated by triangulating the
polygon from R is obtained based on our approach.

2.2 Ran2Ran NDD

For obtaining Ran2Ran NDDs, previous work had to assume that the net-
works are in certain specific shapes, including disks [9,26,28], triangles [29,32],
rectangles [10,12,13,28], rhombuses [24], trapezoids [27], and regular poly-
gons [10,15,21,25,33], which considerably limits the applicability of these
approaches in modeling and analyzing wireless networks. Our recently proposed
approach in [37] can handle the networks in the shape of arbitrary polygons as
well as the polygons with different node densities in different subareas. The D&R
method is also applied to this end by triangulating polygons. Specifically, we first
obtain the Ran2Ran NDDs associated with arbitrary triangles (i.e., Ran2Ran
triangle-NDDs), including the Ran2Ran NDD within an arbitrary triangle, and
that between two arbitrary triangles which can be disjoint or share a common
vertex or side. Then the Ran2Ran NDDs associated with arbitrary polygons
can be obtained through D&R methods, since any polygon can be triangulated.
Therefore, the Ran2Ran NDD-based performance metrics of wireless ad hoc
networks associated with arbitrary polygons can be quantified properly.

Nonuniform node distribution can also be considered. Take the irregular poly-
gon with the triangulation shown in Fig. 1(b) for example. Assuming the node
density ratio among T1, T2, T3, and T4 is λ1:λ2:λ3:λ4 (λ1, λ2, λ3, and λ4 are not
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0 at the same time), through D&R, the CDF of the Ran2Ran NDD within the
polygon is given by a weighted probabilistic sum,

F (d) =
4∑

i=1

4∑

j=1

SiλiSjλj(∑4
k=1 Skλk

)2Fij(d), (3)

where Sx is the area of triangle Tx, and Fij(d) or Fji(d) is the CDF of the
Ran2Ran NDD within triangle Ti if i = j, or between two triangles Ti and Tj if
i �= j, which have been obtained above as Ran2Ran triangle-NDDs.

For tiered polygons shown as in Fig. 1(c), with the Ran2Ran triangle-NDDs
obtained based on the above approach, the CDFs of the Ran2Ran NDDs within
P1 and P2, i.e., F11(d) and F22(d), can be obtained. Assuming the node density
ratio among P1 and P2 is λ1:λ2 (λ1 and λ2 are not 0 at the same time), and
with a weighted probabilistic sum, we have

F33(d) =
2∑

i=1

2∑

j=1

SidiSjdj(∑2
k=1 Skλk

)2 Fij(d),

F3i(d) =
2∑

j=1

Sjλj∑2
k=1 Skλk

Fij (d), (i ∈ {1, 2}) (4)

where Sx is the area of Px, and Fij(d) or Fji(d) is the CDF of the Ran2Ran
NDD within Pi if i = j, or between Pi and Pj if i �= j. With F11(d), F22(d), and
F12(d) obtained by (3), F33(d), F13(d), and F23(d) can be obtained by (4).

3 Applications in Finite Wireless Ad Hoc Networks

As mentioned before, NDD can be utilized to characterize most of the perfor-
mance metrics in finite wireless ad hoc networks due to their nonlinear relation-
ships with the distances among nodes. In this section, we categorize the exist-
ing applications in the current literature into different levels, including graph,
transceiver, link, path, and network levels. We also show the efficacy of the new
approaches highlighted in Sect. 2 on some selected performance metrics with arbi-
trary shapes/densities, in comparison with previous approaches/approximations
such as using average density, ignoring border effect (e.g., in PPP), and so on.

3.1 Graph Level

There are several representative performance metrics at the graph level, such as
kth nearest neighbor (k–NN) distance, node degree (just k–NN below a certain
threshold), etc. Especially, 1–NN and (n − 1)–NN (n is the total number of nodes
in the network) correspond to the nearest and farthest neighbor distances, respec-
tively, which are useful for routing protocol design in ad hoc networks [21,30].
For example, in a sparse network where the network size is much larger than
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the communication range of the nodes, a nearest-neighbor routing is beneficial to
reducing energy consumption and increasing network throughput. On the other
hand, in a small dense network, choosing the farthest node for packet relay, the
routing overhead can be alleviated by reducing the number of transmissions. In
addition, the nearest neighbor distance distribution was also utilized in [16,17] to
evaluate the nearest-job-next service discipline for mobile collectors or chargers
(known as mobile elements).

Suppose there are n nodes uniformly distributed at random in a network
area. For a node i (either a random or reference node), the distances from the
other n− 1 nodes to node i are ordered as d1 ≤ d2 ≤ · · · ≤ dn−1. Let Δk denote
the random variable which represents the k–NN distance to node i. The PDF of
Δk according to order statistic is

fΔk
(d) =

(n − 1)!
(k − 1)!(n − 1 − k)!

[F (d)]k−1[1 − F (d)]n−1−kf(d), (5)

where F (d) and f(d) are the CDF and PDF of any NDD introduced in Sect. 2,
respectively.

Suppose there are n = 10 nodes randomly distributed in P3 shown in
Fig. 1(c). For λ1:λ2 = 1:1 (i.e., uniform distribution) and 10:1 (nonuniform dis-
tribution), Fig. 2 shows the corresponding Ran2Ran nearest neighbor distance
distributions, compared with the result obtained based on the PPP model. Due
to the ignoring of the network border effect in PPP and the different node den-
sity ratios, there exist gaps among the comparisons. Also in the nonuniform case
where P1 has a higher density, surrounded by P2 with a lower density, nodes are
more likely closer to each other in P1, with nearer nearest-neighbors than the
uniform case, as shown in Fig. 2.

3.2 Transceiver Level

The performance metrics at the transceiver level include path loss [11], received
signal strength for a given transmission power, transmission energy consumption
to ensure a certain received power [15,30,38], etc.
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Path Loss and Signal Strength. Let us assume a general path-loss model,
where the path loss of the transmission power at distance d is

L(d) = βdα
0 d−α, (6)

where β is a path-loss constant determined by the hardware features of trans-
ceivers, d0 is a given reference distance, and α is the path-loss exponent. As a
result, the received signal strength at distance d is just

Pr(d) = L(d)Pt, (7)

where Pt is the transmission power. Therefore, given a distance distribution,
the distributions of path loss and received signal strength can also be obtained
by using the change-of-variable technique. The model can be readily extended
to include the shadowing and fading effects of wireless channels. For example,
log-normal shadowing and Rayleigh fading can be considered. For the Rayleigh
fading channel, we have the PDF of the channel power gain as

fX(x|d) =
1

Pr(d)
e

−x
Pr(d) . (8)

Then the PDF of the signal strength at the receiver is

fX(x) =
∫ dmax

dmin

fX(x|d)f(d)dd, (9)

where f(d) is the PDF of any NDD, and dmin and dmax are the minimum and
maximum distances between the transmitter and receiver, respectively. In addi-
tion, log-normal shadowing and Rayleigh fading can also be modeled as inde-
pendent random variables that are not related to inter-node distances. As shown
in [39], the shadowing effect follows a log-normal distribution with standard devi-
ation σ (typically between 0 and 8 dB), and Rayleigh fading follows an exponen-
tial distribution of mean 1. Therefore, the extension of the path-loss model along
with shadowing and fading is the multiplication of independent random variables
and can still be analyzed based on the NDD-based model.

Transmission Energy Consumption. The energy consumed by a radio trans-
mitter is proportional to the αth power of the distance to the receiver. In a
simplistic model with wide applicability [15,38], the average one-hop energy
consumption of the radio transmitter can be formulated as

ETx = ε

∫
dαf(d)dd = εK, (10)

where ε is a constant related to the environment, f(d) is the PDF of any relevant
NDD, and K can be viewed as the normalized average bit-energy consumption.
Based on the obtained NDDs shown in Fig. 2, Fig. 3 shows the variations of K
as α increases. Due to the nonlinear effect of the path loss exponent, even a
small difference in distance distributions can lead to a big difference in energy
consumption. Again, PPP-based model differs from the reality due to the ignored
border effect, and nonuniform node distribution also has a great effect.
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3.3 Link Level

The interference [9,10], SINR [10], outage (just SINR below a certain thresh-
old) [11], link capacity [10], etc., achieved at either a random or fixed receiver
are link-level performance metrics. Assuming that all the transmitters in the
network have the same transmission power Pt, the cumulative interference at
the receiver from all its interfering nodes is

I = Pt

∑

i

L(di), (11)

where L(di) is given in (6), and di is the distance from the receiver to the ith
interfering node. So the SINR achieved at the receiver is

SINR =
PtL(d)

NoW + I
, (12)

where d is the distance from the receiver to its transmitter, W is the commu-
nication bandwidth, and N0 is the one-sided spectral density of additive white
Gaussian noise. Given a modulation and coding scheme, outage probability rep-
resents the chance that the SINR achieved at a receiver is no larger than a spec-
ified threshold so that the reception is considered unsuccessful. Therefore, the
CDF of the received SINR is significant to determine the link outage probability.
Meanwhile, according to Shannon’s theory, the capacity of the link between the
transmitter and receiver is

C = W log2(1 + SINR). (13)

Since I, SINR, and C are all functions of distance, given the corresponding NDD,
their distributions can also be obtained, which are significant for statistically
analyzing the performance of ad hoc networks. For the network shown in Fig. 1(c)
with n = 10 nodes randomly distributed in P3, Figs. 4 and 5 show the cumulative
interference from the other 9 interferers and SINR at R, respectively, for both
λ1:λ2 = 1:1 and 10:1, in comparison with the result obtained based on the
PPP model (Pt = 2 mWatt, L(d) = −38 − 20lg(d) (dB), W = 5 MHz, and
N0 = −174 dBm/Hz). Higher density in P1, surrounding R, thus causes a higher
interference and yields a lower SINR at R, as shown in the figures.

3.4 Path Level

The metrics at the link level shown above are utilized to investigate the per-
formance of single-hop communications (i.e., via a direct link). For analyzing
multi-hop transmissions at the path level, NDD can still be utilized. For exam-
ple, hop distance is crucial to the route discovery delay, the reliability of message
delivery, and the minimization of multi-hop energy consumption. The authors
in [13] investigated the distribution of the minimum hop distance H between
a random source and destination pair based on NDD. The closed-form expres-
sions for the probability that two nodes can communicate within H = 1 hop or
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H = 2 hops were derived. Analytical bounds were provided for the paths with
H > 2 hops. In [40], the NDD between a fixed source and destination pair with
a single relay uniformly distributed at random in between is utilized to obtain
the distribution of the capacity of the two-hop relay communication.

3.5 Network Level

The analysis on the network capacity belongs to this level. Network capacity
can be investigated from the perspective of either concurrent links or flows. For
example, in a clustered ad hoc network, there are concurrent single-hop commu-
nications between cluster members and their heads in several clusters, where the
network capacity can be obtained based on the link capacity. On the other hand,
in an ad hoc mesh network, there might be several multi-hop communications
(referred to as flows) happening concurrently. The network transport capacity
in this case can be investigated based on the capacity studied at the path level.

As shown above, ignoring border effect or using average density often in PPP
and existing work skews results greatly, which highlights the need for NDDs to
analyze performance metrics accurately in finite ad hoc networks.

4 Issues, Challenges, and Directions

Although the relevant research on both types of NDDs has achieved remarkable
breakthroughs, there are still open issues which are challenging to be solved.

Nonuniform Distance Distributions. Most of the existing probabilistic
distance-based models and the tools from stochastic geometry assume uniform
node distribution. However, in many realistic ad hoc networks, nodes are not
always uniformly distributed, either initially or due to node mobility. For both
types of NDDs, the approaches based on D&R methods can handle the case where
nodes are uniformly distributed with different node densities in different subareas
of a network, which leads to a discrete nonuniform node distribution. It is neces-
sary to consider a more general, continuous nonuniform node distribution.
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3D Distance Distributions. The Ref2Ran NDDs can be easily extended to
consider a reference point with height by the Pythagorean theorem, while for a
more general 3D scenario and the Ran2Ran NDDs, there is little work on the
approaches in the current literature.

Non-Euclidean Distance Distributions. Most of our existing work, and the
existing literature, focused on Euclidean (2-norm) distances, which indeed have
wide applications in wireless communication systems as radio signals propagate
in the same, uniform medium. However, other distance norms, e.g., Manhattan
(1-norm), Chebyshev (∞-norm) and generic l-norms, also have wide application
in natural sciences and engineering disciplines, including computer networking.
For example, when vehicles travel in a downtown urban scenario, Manhattan
distance is more appropriate for travel distance calculation (or carry-and-forward
delay in VANETs), which is in fact called taxicab geometry. There are only
a few isolated distance results on taxicab geometry and other non-Euclidean
geometries, including non-planar geometries such as Lobachevskian (hyperbolic)
and Riemannian (spherical) geometries, which are increasingly used for modeling
logical and physical networks. We plan to extend our planar geometry results to
non-planar ones, with new results and new approaches.

High-Order and Multi-hop Distance Distributions. So far, our work
focused on the distance distributions between two random points, or between a
random point and a reference point. A high-order distance distribution involves
more than two points. For example, in relay communications, the relay can
choose different forwarding schemes (amplify-and-forward, decode-and-forward,
and so on) and the destination can select or combine the signal from the source
or relay (selective combination, maximum rate combination, and so on). For
amplify-and-forward and selective combination, the signal strength received at
the destination depends on the path loss of both the source-to-relay and relay-to-
destination channels, eventually the product of the distances among the source,
relays and destination. Similarly there is a need for the sum, difference and ratio
of two distances. Furthermore, more than two distances can be involved, e.g., in
the distribution of hop distances between source and destination. This is a very
hard problem and there are only a few results for two or three hops [40].

Joint and Conditional Distance Distributions. The ultimate goal is to
address the joint and conditional distance distributions, with potentially cor-
related distances due to the triangular inequality. For engineering problems,
although closed-form explicit expressions with elementary functions are our
target, as what we have achieved for rhombuses, hexagons and triangles, we
also have the freedom to develop algorithmic approaches that produce symbolic
results in a parametrized way. For example, for an arbitrary geometry with-
out symbolic expressions, it is unlikely to derive its properties symbolically, but
given an arbitrary geometry with parameters, the algorithm and thus computer
program can output parametrized expressions. This can further guide and speed
up numerical calculation and error or bound analysis, determining expression
truncation and numerical precision, for practical usage purposes.
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5 Conclusion

As a significant complementary tool to the PPP/BPP models from stochastic
geometry, probabilistic distance-based model has been extensively studied and
applied in finite wireless networks. In this paper, we surveyed the state-of-the-art
approaches to both the Ref2Ran and Ran2Ran NDDs with arbitrary shapes and
nonuniform densities, and their applications in ad hoc networks. The still-open
issues were also discussed for the future research directions in this field.
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