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Abstract. The widely considered power constraints on optimizing
power allocation in wireless networks, e.g., pn ≥ 0, ∀n, and

∑N
n=1 pn ≤

Pmax where N and Pmax are given constants, imply the constraints, i.e.,
pn ≤ Pmax, ∀n. However, the related implicit constraints are regarded
as redundant in the most current studies. In this paper, we explore the
question “Are the implicit constraints really redundant?” in the opti-
mization of power allocation especially when using iterative methods
that have slow convergence speeds. Using the water-filling problem as
an illustration, we derive the structural properties of the optimal solu-
tions based on Karush-Kuhn-Tucker conditions, propose a non-iterative
closed-form optimal method, and use subgradient methods to solve the
problem. Our theoretical analysis shows that the implicit constraints are
not redundant, and their consideration can effectively speed up conver-
gence of the used iterative methods and reduce the sensitivity to the
chosen step sizes. Numerical results for the water-filling problem and
another existing power allocation problem confirm the effectiveness of
considering the implicit constraints.
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1 Introduction

Future wireless communication networks are required to support a large num-
ber of users with various requirements, especially the large bandwidth demands
of multimedia services. To fulfill the requirements, radio resource management
(RRM) plays an essential role as the system level control of co-channel inter-
ference and other radio transmission characteristics in wireless communication
systems [1]. RRM involves strategies and algorithms for controlling parameters
such as transmit power, user allocation, beamforming, data rate, handover crite-
ria, modulation scheme and error coding scheme, etc., aiming at maximizing the
utilization of the limited radio-frequency spectrum and radio network infrastruc-
ture [2]. Among these RRM techniques, optimization of power allocation is an
important aspect of wireless communication system design that is well-studied
in the past decades [1,2].
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On one hand, as an iterative first-order method, the subgradient method is
widely used in many studies [3–13] to solve various power allocation problems
or other optimization problems on RRM in wireless systems. In [3,4], the sub-
gradient method was used to solve the problem of maximizing the throughput
under the constraints of interference power and individual transmit power in
cognitive radio networks. In [5], subgradient methods were utilized based on
dual decomposition to solve the simultaneous routing and resource allocation
problem. In [6], a subgradient solution was achieved to compute the maximum
rate and the optimal routing strategy to solve the maximum multicast rate prob-
lem in the general undirected network model. In [7], a distributed subgradient
method was used to solve the problems of how to choose opportunistic route
for users to optimize the total utility or profit of multiple simultaneous users
in wireless mesh networks. In [8], distributed subgradient methods were applied
to optimize global performance in delay tolerant networks with limited informa-
tion. In [9], a subgradient solution was proposed to solve the problem of jointly
optimizing channel pairing, channel-user assignment, and power allocation in a
single-relay multiple-access system. In [10], an α-approximation dual subgradient
algorithm was proposed to optimize the total utility of multiple users in a load-
constrained multihop wireless network. Based on the subgradient method, the
study in [11] proposed a distributed optimal data gathering cost minimization
framework with concurrent data uploading in wireless sensor networks. With the
dual subgradient method, the study in [12] focused on convergence analysis of
decentralized min-cost subgraph algorithms for multicast in coded networks. In
[13], the subgradient method was used for joint power and bandwidth allocation
in an improved amplify and forward cooperative communication scheme. Though
subgradient methods can be operated in a distributed manner, they usually have
slow convergence speeds and are very sensitive to the chosen iteration
step sizes [14,15], which need to be improved to reduce the computation costs
and even signaling overhead in wireless networks and to reduce the sensitivity to
the chosen step sizes since (1) the subgradient method may not converge under an
improper step size, and (2) it is not easy to choose the proper step size, especially
when the formulated optimization problem is very complex.

On the other hand, mathematically, the formulated optimization problems
of power allocation in wireless systems are generally subject to at least two
inequality constraints [1–13] on pn, the transmit power allocated at a base sta-
tion (BS) for the n-th user, e.g., (1) nonnegative: pn ≥ 0,∀n, and (2) limited
sum:

∑N
n=1 pn ≤ Pmax, where N and Pmax respectively denote the total number

of users served by the BS and the BS’s maximum transmit power. These two
power constraints imply another set of (implicit) constraints, i.e., pn ≤ Pmax,∀n.
However, in most currently studied power allocation optimization problems or
other similar optimization problems with the above two inequality constraints,
the implicit constraints are regarded as redundant and useless in the design
of strategies and algorithms for solving the problems. From the perspective of
mathematics, the implicit constraints obviously hold, but are they really redun-
dant in optimization algorithms? To the best of our knowledge, this question is
unexplored.
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The above motivates us to answer the question “Are the implicit constraints
really redundant?” in power allocation optimization especially when using sub-
gradient methods in the solution algorithms. Specifically, we study the water-
filling problem as a typical example of power allocation optimization. Based on
Karush-Kuhn-Tucker (KKT) conditions, we derive the structural properties of
the optimal solutions to the water-filling problem and evaluate the performance
of the proposed methods with and without considering the implicit constraints.
Our contributions are summarized below:

– To explore the first studied question, using the water-filling problem as an
illustration, our theoretical analysis shows that considering the implicit con-
straints can effectively speed up the convergence of the subgradient method,
reduce the sensitivity to the chosen step size and lead to convergence even
when an improper step size is used, while the opposite is true if the implicit
constraints are not considered. This finding can be extended to other optimiza-
tion problems and applied to other iterative methods. Besides, we propose a
non-iterative closed-form optimal method.

– Numerical results on the water-filling problem and the power allocation prob-
lem for multiuser systems in [16] show that considering the implicit constraints
in the algorithm design can effectively improve the performance of the used
subgradient methods.

The rest of this paper is organized as follows. Section 2 introduces the water-
filling problem as an illustration of power allocation. Section 3 derives the struc-
tural properties of the optimal solutions. Section 4 proposes and analyzes the
algorithms to solve the optimization problem. Section 5 evaluates the perfor-
mance of the proposed algorithms. Finally, Sect. 6 concludes this paper.

2 The Water-Filling Problem Typical in Resource
Allocation

In this section, we provide a general form of the resource allocation problem and
its formulation as the widely studied water-filling problem, to explore whether
the implicit constraints are really redundant for optimization.

2.1 General Resource Allocation Problem

Many existing optimization problems for allocation of power or other resource
can be formulated or transformed into a general form as

max
p,y

f(p,y) (1a)

s.t.
N∑

n=1

pn ≤ Pmax; pn ≥ 0,∀n ∈ N , (1b)

y ∈ SY ; gi(p,y) ≤ 0,∀i ∈ I (1c)



146 X. Li and V.C.M. Leung

where N is a given number (e.g., number of users), N = {1, 2, . . . , N}, I and
SY are two given sets about resource constraints; p = [p1, p2, . . . , pN ]T and y,
respectively, are variable vectors of power and other resource allocations; f(p,y)
and gi(p, y) are, respectively, the given objective function (e.g., sum data rate)
and constraint functions w.r.t. p and y; Pmax is a positive constant scalar (e.g.,
maximum sum power). From (1b), we can get the implicit constraints as

pn ≤ Pmax,∀n ∈ N . (2)

In existing studies, the same or similar implicit constraints in (2) are usu-
ally overlooked and are regarded as redundant. Besides, whether problem (1) is
convex or nonconvex, it can be solved with a family of iterative methods (e.g.,
subgradient method) to get the optimal or suboptimal solutions.

2.2 Water-Filling Problem

The water-filling problem given below is a typical formulation of the general
resource allocation optimization problem described above, in which the sum
capacity of users is maximized under transmit power constraints [17].

max
p

N∑

n=1

log2(1 + αnpn), s.t.
N∑

n=1

pn ≤ Pmax; pn ≥ 0,∀n ∈ N (3)

where α = [α1, α2, . . . , αN ]T is a strictly positive constant vector. Clearly, (3)
is a simple case of (1) without loss of generality.

We incorporate the implicit constraints into problem (3) as

min
p

z=−
N∑

n=1

log2(1 + αnpn) (4a)

s.t. − pn ≤ 0, ∀n ∈ N , (4b)
pn − Pmax ≤ 0, ∀n ∈ N , (4c)

N∑

n=1

pn − Pmax ≤ 0, (4d)

which is a strictly convex optimization problem. Thus, a local optimal solution
is also globally optimal and the optimal solution is unique. Moreover, we can
get the Lagrangian for problem (4) as L(p,λ, s, ν) = −∑N

n=1log2(1+αnpn)+
∑N

n=1 (ν−λn+sn)pn−(
ν +

∑N
n=1 sn

)
Pmax, where λ ∈ R

N , s ∈ R
N and ν ∈ R

are the nonnegative Lagrange multiplier vectors and scalar for constraints (4b),
(4c) and (4d), respectively. Thus, we can get the dual objective as g(λ, s, ν) =
inf
p

L(p,λ, s, ν), and then the dual problem as max
λ,s,ν

g(λ, s, ν). Since problem (4)

is convex, the corresponding duality gap reduces to zero at the optimum.
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3 Structural Properties of the Optimal Solutions

According to the KKT conditions [14,15], if a feasible solution p∗ ∈ SP is a local
(and global) minimizer of the convex optimization problem (4), then there exist
multipliers (λ∗, s∗, ν∗), not all zero, (λ∗ � 0, s∗ � 0, ν∗ ≥ 0), such that

∂L

∂pn
=− αn

(1+αnp∗
n) ln 2

−λ∗
n+s∗

n+ν∗ = 0, ∀n ∈ N , (5)

λ∗
np∗

n = 0, λ∗
n ≥ 0, p∗

n ≥ 0, ∀n ∈ N , (6)

s∗
n(p∗

n − Pmax) = 0, s∗
n ≥ 0, p∗

n ≤ Pmax, ∀n ∈ N , (7)

ν∗(
N∑

n=1

p∗
n − Pmax) = 0, ν∗ ≥ 0,

N∑

n=1

p∗
n ≤ Pmax. (8)

Define N1 � {n|s∗
n > 0, n ∈ N}, N2 � {n|s∗

n = 0, n ∈ N}, and ω∗ �
ν∗ · 1 + s∗ ∈ R

N , where 1 = [1, 1, . . . , 1]T ∈ R
N . Thus, we have N1 ∪ N2 = N

and N1 ∩ N2 = ∅. Specifically, if there exists n ∈ N such that p∗
n = Pmax,

then denote the index as k#, i.e., p∗
k# = Pmax; otherwise, k# does not exist.

We give some remarks for the above KKT conditions and derive some structural
properties of the optimal solutions via some theorems below.

Remark 1. Specifically, if N1 
= ∅, then for ∀n ∈ N1, we have p∗
n = Pmax accord-

ing to (7), and thus p∗
k = 0 and s∗

k = 0 for ∀k ∈ N , k 
= n according to (7) and
(8). Thus, there exists at most one positive element in s∗, i.e., |N1| ≤ 1. Besides,
if |N1| = 1, the only element in N1 is equal to k# and we have N2 = N \ {k#}.
Note that even if N1 = ∅, i.e., N2 = N , it is possible that k# also exists.

Remark 2. For ∀n ∈ N , λ∗
ns∗

n ≡ 0. If there exists any k ∈ N , such that λ∗
k > 0

and s∗
k > 0, then according to (6) and (7), we can get p∗

k = 0 and p∗
k = Pmax

simultaneously, which is clearly contradictory.

Theorem 1. With α fixed, if Pmax is not fixed and can be adjusted, then the
optimal objective z∗ is strictly decreasing with the increase of Pmax.

Theorem 2. Theoptimalν∗ satisfiesthat: ifN1 = ∅, ν∗ = max
n∈N

{ αn

(1 + αnp∗
n) ln 2

}
;

Otherwise, ν∗= αn

(1+αnPmax) ln 2 −s∗
n, n ∈ N1, and ν∗ ≥ max

n∈N2

{ αn

ln 2
}
.

Remark 3. Based on Theorem 2, we have ν∗ > 0, and thus the optimal solution
p∗ satisfies

∑N
n=1 p∗

n = Pmax according to (8).

Remark 4. In terms of ω∗, if N1 = ∅, then we have ω∗ = ν∗ · 1 � 0, which
indicates that (5) is reduced to the form in existing studies (i.e., ∂L1

∂pn
) in this

case. Otherwise, based on Remarks 1 and 3, we have ω∗
k# = ν∗ + s∗

k# > ν∗ > 0
for k# ∈ N1, and ω∗

n = ν∗ > 0 for ∀n ∈ N \ {k#}, which indicates that ω∗ is
divided into two positive parts.
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Theorem 3. The optimal solution p∗ and the corresponding multiplier scalar
ν∗ satisfy p∗

n = min
{[

1
ν∗ ln 2 − 1

αn

]+
, Pmax

}
,∀n ∈ N where [x]+ � max{x, 0}.

Remark 5. From Theorem 3, in the optimal solution’s closed-form expression,
the multiplier vectors (λ∗, s∗) can be eliminated, while the the multiplier scalar
ν∗ is dominating. However, λ∗ is to operate on [x]+ such that the optimal solu-
tion p∗ � 0, while s∗ is to operate on min{x, Pmax} such that the optimal
solution p∗ 
 Pmax. In most works, their corresponding solutions are in the
form of [x]+ and have no operation of min{x, Pmax}.

Theorem 4. If αn1 ≥ αn2 , n1 ∈ N , n2 ∈ N , then p∗
n1

≥ p∗
n2

holds in the optimal
solution p∗.

Remark 6. Let n1 ∈ N and n2 ∈ N be two indices such that αn1 ≥ αn2 .
Specifically, for the optimal solution P∗, if p∗

n1
= 0, then p∗

n2
must also be zero

based on Theorem 4.

Theorem 5. There exists the only k# ∈ N such that p∗
k# = Pmax, if and only

if both k# = arg max
n∈N

{αn} and max
n∈N \{k#}

{αn} ≤ αk#

1 + αk#Pmax
hold.

Theorem 6. Let π be the vector obtained by sorting α in a descending order.
Then the number of strictly positive elements in the optimal solution p∗ is

χ = max
{
n ∈ N | 1

πn
− 1

n

( n∑

r=1

1
πr

+ Pmax

)
< 0

}
, (9)

and then the corresponding optimal multiplier ν∗ can be expressed as

ν∗ =

⎧
⎨

⎩

any value in
[

π2
ln 2 , 1

( 1
π1

+Pmax) ln 2

]
, χ = 1,

χ(∑χ
r=1

1
πr

+Pmax

)
ln 2

, χ ∈ N , χ ≥ 2. (10)

Remark 7. From (10) in Theorem 6, ν∗ can take the value of χ

(∑χ
r=1

1
πr

+Pmax) ln 2

for all the possible values of χ, which holds in most works where the implicit
constraints in (2) are not considered. However, if the implicit constraints in
(2) is considered, ν∗ may take multiple values as shown in Theorem 6. Most
importantly, Theorem 6 provides a simple non-iterative closed-form method
to get the optimal solution p∗, denoted as Direct Search Method (DSM).

From the above analysis, not considering the implicit constraints in (2) can
be regarded as a special case of considering them in this paper, which can be
extended to other optimization problems. To get the optimal solution p∗ to
problem (3), whether the implicit constraints are considered in this paper or not
in most works, it is very important to get the optimal multiplier ν∗ by using
either non-iterative methods (i.e., the proposed DSM) or iterative methods (e.g.,
subgradient method). We will show that considering the implicit constraints can
greatly improve the convergence speed in iterative methods. In this paper, we
only discuss the widely used subgradient method.
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4 Algorithms to Solve the Optimization Problem

Based on the above analysis, the subgradient method without considering the
implicit constraints and the proposed subgradient method that considers the
implicit constraints are described in Algorithm 1 (Alg. 1) and Algorithm 2
(Alg. 2), respectively. Once the convergence condition is given, the only differ-
ence between Alg. 1 and Alg. 2 is the updating of p(t) at each iteration, i.e., the
operation of min{x, Pmax} in the proposed Alg. 2 is not found in Alg. 1. Note
that these algorithms share a common form of those applying the subgradient
method in most works and that p∗ is unique while ν∗ may not be unique.

Algorithm 1. Existing Subgradient Method without Implicit Constraints.
1: Input: α, Pmax.
2: Initialize t = 0, p(0) = 0N×1, ν(0) = 0.1, accuracy η = 10−5.
3: while not converge do
4: Update p(t) as p

(t)
n =

[
1

ν(t) ln 2
− 1

αn

]+
, ∀n ∈ N .

5: Check convergence condition:
∣
∣ν(t)
( N∑

n=1

p
(t)
n − Pmax

)∣
∣ < η.

6: Set t ← t + 1.

7: Update ν(t) =
[
ν(t−1) + θ(t)

( N∑

n=1

p
(t−1)
n − Pmax

)]+
.

8: end while
9: Output: p, ν.

Algorithm 2. Proposed Subgradient Method with Implicit Constraints.
1: Input: α, Pmax.
2: Initialize t = 0, p(0) = 0N×1, ν(0) = 0.1, accuracy η = 10−5.
3: while not converge do
4: Update p(t) as p

(t)
n =min

{[
1

ν(t) ln 2
− 1

αn

]+
, Pmax

}
, ∀n ∈ N .

5: Check convergence condition:
∣
∣ν(t)
( N∑

n=1

p
(t)
n − Pmax

)∣
∣ < η.

6: Set t ← t + 1.

7: Update ν(t) =
[
ν(t−1) + θ(t)

( N∑

n=1

p
(t−1)
n − Pmax

)]+
.

8: end while
9: Output: p, ν.

Besides, note that the achieved nonnegative solution p may be infeasible in
the iteration process with subgradient method. Then we provide the sketch proof
that considering the implicit constraints can improve the convergence speed of
subgradient method as follow.

(1) If there exists k < +∞ such that ν(k) = 0 in the iteration process, we
have
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– Without the implicit constraints considered, we have p
(k)
n =

[
1

ν(k) ln 2
− 1

αn

]+ =

+∞,∀n ∈ N , and ν(k+1) =
[
ν(k) + θ(k+1)

( ∑N
n=1 p

(k)
n −Pmax

)]+ = +∞. Then
we have p

(k+i)
n = 0,∀n ∈ N and ν(k+i) = +∞ for all 1 ≤ i < +∞, which means

the iteration process will not converge in a limited number of iterations.
– With the implicit constraints considered, we have p

(k)
n = Pmax,∀n ∈ N , and

ν(k+1) = θ(k+1)(N − 1)Pmax, which can avoid the above bad case and thus
guarantee the convergence in a limited number of iterations.

(2) Otherwise, we have ν(t) > 0,∀t. Thus, we have ν(t) = ν(t−1) +θ(t)
( ∑N

n=1

p
(t−1)
n −Pmax

)
> 0 for ∀t ≥ 1, and then |ν(t)−ν(t−1)| = θ(t)

∣
∣
∑N

n=1 p
(t−1)
n −Pmax

∣
∣,

which indicates that the convergence speed of ν(t) depends on the steps θ(t) and
the value of

∣
∣ ∑N

n=1 p
(t−1)
n − Pmax

∣
∣. Refer to [14,15] on how to choose a proper

specific series of steps θ(t). Since
∣
∣ ∑N

n=1 min
{[

1
ν(t) ln 2

− 1
αn

]+
, Pmax

} − Pmax

∣
∣ ≤

∣
∣ ∑N

n=1

[
1

ν(t) ln 2
− 1

αn

]+ −Pmax

∣
∣ for ∀t, with the same steps θ(t), the subgradient

method considering the implicit constraints can achieve a higher convergence
speed and needs fewer iterations than the subgradient method that does not
consider the implicit constraints.

In terms of the step size θ(t), we will use three common categories as: (1)
C1: constant step size, e.g., θ(t) = 0.1 for ∀t; (2) C2: nonsummable diminishing
step size, e.g., θ(t) = 1√

t
for ∀t; (3) C3: square summable but not summable step

size, e.g., θ(t) = 100
t+100N for ∀t.

As shown in [14,15], for C1, the subgradient method converges to the opti-
mal value within a small range, i.e., lim

t→∞|ν(t) − ν∗| < ε. This indicates that the
subgradient method finds an ε−suboptimal point within a finite number of iter-
ations. The value ε is a decreasing function of the step size. Moreover, for C2 and
C3, the subgradient method is guaranteed to converge to the optimal value if the
chosen steps are small enough. With proper initialization, both the proposed
and existing subgradient methods always converge but need different numbers
of iterations. Most importantly, the solution found in each iteration may not be
feasible. Considering the implicit constraints in each iteration can accelerate the
iterative search of the optimal solution by excluding infeasible solutions from
the search subspace, and thus achieve a higher convergence speed.

In terms of the sensitivity of the subgradient method to the chosen step
sizes, the existing method may not converge if the step sizes are improper, but
the proposed method will converge for these step sizes. The detailed theoretical
analysis is omitted due to the page limit, but we will provide some numerical
examples in Sect. 5 to show that considering the implicit constraints leads to
convergence even using step sizes that are improper to the existing method.

5 Numerical Results

In this section, we evaluate by simulations the effectiveness of the subgradient
methods considering the implicit constraints in solving the water-filling problem
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and the power allocation problem in [16], in terms of the convergence speed and
sensitivity to the chosen step sizes. Since the only difference between the sub-
gradient methods with and without considering the implicit constraints is the
operation of min{x, Pmax}, which computation complexity can be neglected com-
pared to that of the whole algorithm, we use the number of iterations required
to satisfy the convergence condition as the convergence speed of the respective
algorithms [14,15]. Note that in the following, convergence accuracy refers to the
gap between the achieved value (e.g., optimization objective value and multiplier
value) and its optimal value, and that we use the ratio of the required numbers
of iterations of the subgradient methods without/with considering the implicit
constraints for the following comparison of convergence speed x.

5.1 Numerical Examples in Water-Filling Problem

In the water-filling problem in (3), by using the proposed DSM to get the optimal
values (i.e., the optimal objective value z∗, the optimal dominating multiplier ν∗

and the optimal solution p∗) as the baseline, we mainly evaluate the performance
of the subgradient methods with/without considering the implicit constraints
and then explore whether the implicit constraints are really redundant in the
above three scenarios. We provide two numerical examples as follow.

– Example 1: N = 3, Pmax = 1, α = [0.75, 2, 3]T . DSM gives the optimal
solution p∗ = [0, 0.416667, 0.583333]T , the optimal objective z∗ = −∑N

n=1

log2(1 + αnp∗
n) = −2.333901, and the optimal multiplier ν∗ = 1.573849.

– Example 2: N = 20, Pmax = 2, α = [2, 1.5, α3, . . . , α20]T , where αn is a
random value in (0, 2] for ∀n ∈ N , n ≥ 3. DSM can also yield the optimal
solution, the optimal objective and the optimal multiplier directly.

Figure 1 compares the values of |z(t) − z∗| and |ν(t) − ν∗| versus the iteration
number for the subgradient methods in Example 1 and Example 2. Here, the
step sizes are set as θ(t) = 0.1, θ(t) = 1√

t
and θ(t) = 100

t+100N for C1, C2 and
C3, respectively. For Example 1, Fig. 1(a) and (b) show that with each of C1,
C2 and C3, Alg. 2 has similar convergence accuracy and a higher convergence
speed compared with Alg. 1. Specifically, Alg2-C1 is about 1.3 times as fast
as Alg1-C1 while Alg2-C2 is about 22.3 times faster than Alg1-C2. Besides,
Alg2-C3 is about 2.7 times as fast as Alg1-C3. For Example 2, Fig. 1(c) and
(d) show that with each of C1, C2 and C3, Alg. 2 has higher or since convergence
accuracy and higher convergence speed than Alg. 1. Specifically, Alg2-C1 is
about 4.9 times as fast as Alg1-C1 while Alg2-C2 is about 35.9 times faster
than Alg1-C2. Besides, Alg2-C3 is about 3.9 times as fast as Alg1-C3.

Moreover, by setting different step sizes, we show that considering the implicit
constraints can reduce the sensitivity to the step sizes and lead to convergence
while the existing method fails to converge. Here, if the iteration process does
not stop within 107 iterations, the method is regarded as not convergent from
the perspective of practical engineering implementation. For instance, we set
θ(t) = N

t+N for ∀t in C3 and use the above same convergence conditions. In this
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Fig. 1. The values of |z(t) − z∗| and |ν(t) − ν∗| versus iteration number, (a) and (b) for
Example 1, (c) and (d) for Example 2.

setting, Alg1-C3 does not converge in Example 1 while Alg2-C3 converges
with 29 iterations.

5.2 Numerical Results of Optimizing Power Allocation in [16]

To further evaluate the effectiveness of considering the implicit constraints, we
consider the power allocation optimization problem in [16], which maximizes
the total system throughput in a multiuser orthogonal frequency-division mul-
tiplexing system under the constraints of total power and minimum data rate
required by each user. To solve the problem, we use the subgradient method
without considering the related implicit constraints (Alg. 3) and with this con-
sideration (Alg. 4). Note that Alg. 3 is the subgradient method used in [16]. In
our simulations, we set the subcarrier number N = 10, user number K = 4,
total power Ptot = 5 Watt and all the users’ required minimum data rate is 5
bps/Hz. We also use the same channel model as in [16], the same convergence
condition as in Alg. 1 and Alg. 2, and the same step sizes in C1, C2 and C3 as in
the previous examples. Note that the convergence condition used in this paper is
much stricter than that in [16] and thus the algorithms require more iterations
to converge but they achieve more accurate solutions. We use the gap between
the achieved objective and the optimal objective as the performance metric. All
the results are averaged over 100 channel realizations.

Figure 2 compares the performance of the subgradient methods w.r.t. the
values of objective gap versus iteration number. Figure 2 shows that Alg. 4 always
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Fig. 2. The values of objective gap versus iteration number.

has a higher convergence accuracy and higher speed than Alg. 3. Specifically, in
C1, C2 and C3, Alg. 4 is about 1.13, 1.87 and 1.15 times as fast as Alg. 3. Thus,
considering the implicit constraints can effectively speed up the convergence of
the subgradient method for optimizing the power allocation in [16].

6 Conclusions

In this paper, we have explored the question “Are the implicit constraints really
redundant?” in power allocation optimization especially when using subgradi-
ent methods. Specifically, by illustrating the water-filling problem to answer the
question, we have derived the structural properties of the optimal solutions based
on KKT conditions, proposed a non-iterative closed-form optimal method and
applied subgradient methods to solve the water-filling problem. Besides, our the-
oretical analysis has shown that the implicit constraints are not redundant, and
their consideration can effectively improve the subgradient methods’ convergence
speed and reduce the sensitivity to the chosen step sizes. Numerical results have
shown that considering the implicit constraints in the water-filling problem can
greatly speed up the methods’ convergence speed by up to about 36 times and
reduce the sensitivity to the chosen step sizes, and that it can also effectively
accelerate the convergence speed by up to 87% in the power allocation prob-
lem in [16]. Thus, the implicit constraints are not redundant in the algorithm
design. Most importantly, the corresponding theoretical analysis and conclusions
about the implicit constraints can be extended to many other resource allocation
problems and to other iterative methods.
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