
Learning Analytics Model in a Casual Serious
Game for Computer Programming Learning

Adilson Vahldick(&), António José Mendes,
and Maria José Marcelino

Department of Informatic Engineering, CISUC,
University of Coimbra, Coimbra, Portugal

adilson.vahldick@udesc.br, {toze,zemar}@dei.uc.pt

Abstract. Games have been used by teachers as a support tool to engage
students in learning tasks. As they often record student’s performance as
learning progresses, it interesting and useful to discuss how that information can
be used to assess learning and to improve the learning experience. For instance,
teachers can use that information to give personalized attention in classes. In
computer programming learning, games can provide an alternative way to
introduce concepts and, mainly, to practice them. This paper proposes a model
to identify the students’ progress considering their performance in programming
tasks. The model is demonstrated by an implementation in a casual computer
programming serious game.

Keywords: Novice programmers � Learning analytics � Fuzzy systems

1 Introduction

Initial programming learning is known to be complex for many students. Games have
been proposed to help students in their initial learning stages, namely to increase their
motivation and engagement with the learning process [1]. Two approaches have been
used: creating and playing games. In the first approach students are asked to develop
small games in order to apply the programming concepts [2]. In the second approach the
students play games to reinforce and practice concepts and programming skills [3]. The
main idea is to motivate students to the learning activities, shortening the time between
theory and practice, and bringing together abstract concepts and concrete activities.

Digital educational environments generate vast amounts of track data that could be
used for the development of learning theories and applications [4]. Learning Analytics
(LA) rely on data generated by the user’s interaction with these environments. LA
approach applied in educational games is an alternative to more traditional forms to
evaluate learning [5] and it avoids to brake the game-flow experience risking to lose
student’s interest [6]. We only found in literature one study with LA applied in pro-
gramming learning games [7]. It proposed a framework with six axes. A mathematical
model, relating each axis to a variable, was created to implement this framework. The
game rates the student considering each variable and normalizes the data based on a
teacher defined ideal behaviour.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
C. Vaz de Carvalho et al. (Eds.): SGAMES 2016, LNICST 176, pp. 36–44, 2017.
DOI: 10.1007/978-3-319-51055-2_6



In this paper, we propose a LA model applied in computer programming games
focused in the student’s performance, rating them automatically based on the perfor-
mance of their classmates. The model was designed as a Fuzzy Logic Controller (FLC).
Fuzzy Logic is closer to human thinking and natural language than other artificial
intelligence approaches [8]. The system is modelled using linguistic terms and thus it is
easy to represent human knowledge [9].

Casual games usually have smooth learning curves and their assignments are often
short [10]. These aspects should also be considered in the design of serious games
reducing the time needed to learn the game features and mechanics, and freeing more
time to learn [11]. We developed a casual serious game for initial computer pro-
gramming learning, called NoBug’s Snack Bar, using a Blocks-Based Programming
(BBP) approach. In BBP the program is constructed through assembling functional
blocks [12]. The LA model was tested in this game.

Section 2 presents the design principles followed and the architecture of the FLC to
design and implement the LA model. Section 3 describes briefly the developed game
and Sect. 4 explains the proposed model. Section 5 demonstrates its implementation
and the data gathered by this model. The final section concludes the paper.

2 Fuzzy Logic Controller and Design

The essential part of a FLC is a set of linguistic control strategies based on expert
knowledge mapped into an automatic control strategy [9]. A basic configuration of a
FLC is depicted by a block diagram such as that shown in Fig. 1.

The controlled system represents a process that is regulated through a control
action. The fuzzification interface is responsible for converting the input data (current
state of the controlled system) into suitable linguistic values (fuzzy sets). The
knowledge base module contains knowledge about all the input and output fuzzy

Fig. 1. Configuration of a FLC [9]

Learning Analytics Model in a Casual Serious Game 37



partitions. The inference module simulates the human decision-making procedure
based on fuzzy concepts, inferring fuzzy control actions to employ fuzzy implications
and linguistic rules. The defuzzification interface converts the range of output values
into the corresponding universe of discourse.

The design procedure of a FCL is divided in several steps as follows [8, 9]:
1-identification of the variables (states and controls); 2-normalization and partition of
the variables space; 3-determination of the shapes of the fuzzy sets and their mem-
bership functions; 4-construction of the fuzzy rule base; 5-definition of the inference
method; 6-determination of the defuzzification strategy.

There are many Fuzzy Logic software packages, as the MATLAB Fuzzy Toolbox
and jFuzzyLogic [13]. jFuzzyLogic is an open source library written in Java that
supports a Fuzzy Control Language (FCL) defined in the IEC-1131 specification. This
specification defines the syntax and semantic of the FCL’s components. jFuzzyLogic
provides an API that interprets and executes a FCL program. It is also possible to define
some or all members of a FLC through Java programming.

3 NoBug’s SnackBar

NoBug’s Snack Bar game mechanics are inspired in time management games. The
player controls an attendant of a snack bar. Customers require some combination of
foods and drinks, and the attendant must go to places where they are prepared, fetch
them and serve them. The mission ends when the player meets all requests.

Figure 2 shows the game’s interface. The animation area (on the left) shows the
mission situation and shows the attendant behavior controlled by the player solution.
The central area allows the construction of the mission solution. The player can run or
debug her/his code. If she/he debugs, then the game shows the list of variables (at the
right side of the figure) and runs one block at a time after each click of the debug button.

Fig. 2. Game interface

38 A. Vahldick et al.



The game covers the initial topics usually included in introductory computer pro-
gramming courses. It is divided in five levels with 55 missions: 1-Sequence actions (10
missions); 2-Variable manipulation (8 missions); 3-Conditionals (13 missions);
4-Loops (14 missions) and 5-Functions and arrays (10 missions). The first four mis-
sions in level one serve only to familiarize the student with basic interface of the game.
That is the reason why we will not include them in our statistics in this paper.

4 LA Model in Computer Programming Learning Games

Following the FLC design procedure described in Sect. 2, our initial concerns were the
definition of state and control variables, their partition in fuzzy subsets and the
assignment of a membership function for each of them. The input variables of the
proposed model are the missions’ level and the time spent to solve them:

• Mission: classify the mission as introductory, development or mastery level.
• Time Spent (TS): is the accumulated time spent by the student to solve the last

three missions. In our first experiments, we used the total time spent in the missions.
However, after some tests, we verified that once a student had a bad performance in
any previous mission, this was propagated for a very long time. Then we con-
strained it to the last three missions. This variable is partitioned into five subsets:
very fast, fast, normal, slow and very slow. The subsets very fast and very slow are
trapezoidal asymmetrical membership functions and the other three are trapezoidal
symmetrical. The universe of discourse range varies according to students’ expe-
rience. The students’ performance in the game depends on several factors, such as
the teaching methodology (learning content, assignments, etc.) and the previous
programming knowledge or literacy (according to the region or country where the
game is being used). To have a general model it is necessary to consider these
divergences. We created a Time Normalization module to deal with these issues.
This module assigns the membership function parameters dynamically, before it
fuzzifies the input variables, performing 5 steps (Fig. 3). In the first step, the module
retrieves from the game database the time spent in the previous three missions of
each student using the Eq. 1:

TS i;mð Þ ¼
T i;m�1ð Þ þ T i;m�2ð Þ þ T i;m�3ð Þ

3
: ð1Þ

where i denotes the student identification, i = 1 denotes the current player which the
system is computing for, m denotes the current mission, T(x, y) denotes the time spent on
mission y by student x, and TS(i, m) denotes the average time spent on the three missions
before the mth mission of student i. Thus, TS(i, m) is the crisp value of the input variable
TS. The second step identifies and removes students (i > = 2) with average time spent
that are at least moderate outliers. The third step aims to create five clusters, one for
each subset, of average times using the process of hierarchical cluster analysis
(HCA) with the complete-linkage method [14]. The fourth step identifies the lowest (l)

Learning Analytics Model in a Casual Serious Game 39



and the highest (g) values on each cluster (c1, c2, c3, c4, c5) where c1 has the lowest
average time values and c5 the highest values. The final step defines each membership
function parameters (veryfast, fast, normal, slow and veryslow) as described in Eqs. 2, 3,
4, 5 and 6:

uveryfast xð Þ ¼ trape x; 0; 0; c1 gð Þ; c2 lð Þþ c2 gð Þ � c2 lð Þ
2

� �
: ð2Þ

ufast xð Þ ¼ trape x; c1 gð Þ; c2 lð Þ; c2 gð Þ; c3 lð Þð Þ: ð3Þ

unormal xð Þ ¼ trape x; c2 gð Þ; c3 lð Þ; c3 gð Þ; c4 lð Þð Þ: ð4Þ
uslow xð Þ ¼ trape x; c3 gð Þ; c4 lð Þ; c4 gð Þ; c5 lð Þð Þ: ð5Þ

uveryslowðxÞ ¼ trape x; c4ðlÞþ c4ðgÞ � c4ðlÞ
2

; c5ðlÞ; c5ðgÞ; c5ðgÞ
� �

ð6Þ

where cn(g) denotes the greatest value of cluster n, cn(l) denotes the lowest value of
cluster n, and x denotes the parameter that is converted to a membership degree
(umembership(x)).

The output variable is the knowledge level of the student. This variable is parti-
tioned into three subsets (bad, good and excellent) and their membership function are
triangles as defined in Table 1.

The next step of the FLC design is to define the inference method and form the rule
base. The Mamdami inference method was adopted because it does not have nonlinear
dynamic equations. The system rates a student according to the time she/he spends to

Table 1. Membership functions of the output variable knowledge level

Subsets Membership functions

Bad trian (0, 0, 11)
Good trian (10, 14, 18)
Excellent trian (17, 20, 20)

Fig. 3. Time Normalization module

40 A. Vahldick et al.



solve the missions. Table 2 summarizes the rule-base, the relation between the two
input variables and the output variable. When the player takes a long time to finish a
mission, the model assumes that she/he has bad knowledge. On the other hand, the
model rates the player as excellent when she/he finishes the mission very fast. In the
other rules, the student classification varies according to the mission level. As the
introductory missions presents new concepts and do not present challenges, it is
expected that the player finishes them quickly. Yet the mastering missions are harder
and full of constraints, really challenging the player.

Centre of Gravity is defined as the defuzzification method. Figure 4 shows the
components relation of the proposed LA model. The ellipses are the input variables.
The Time Normalization module accesses the database of the game and the current
mission to define which is the time spent by the student and updates the knowledge
base. The diamond designates the output variable.

5 Implementation and Discussion

The proposed model was instantiated as a FLC in Java with jFuzzyLogic. The code
below exemplifies the fuzzy rule-base by FCL. Nine rules were created to cover all the
cells in Table 2. The variables definition was suppressed in the code because they were
explained in the previous section.

LA model defined by IEC-FCL

Table 2. Fuzzy rule-base.

Mission Time spent
Very slow Slow Normal Fast Very fast

Introductory Bad Bad Bad Good Excellent
Development Bad Bad Good Good Excellent
Mastering Bad Good Good Good Excellent

Fig. 4. LA Architecture

Learning Analytics Model in a Casual Serious Game 41



We tested our game with 52 students. Figure 5 shows the results obtained in the first
15 missions, divided in introductory (1–7), development (8–11) and mastery (12–15).

Fig. 5. Distribution of the students’ knowledge classification

42 A. Vahldick et al.



On average 30% of students are badly classified in introductory missions. This rate
could alert the teacher or the game designers to review the missions. However, it is also
observable that many students perform very well in the same missions. As the quantity
of bad performing students is stable in introductory missions, maybe the teacher should
address individually those students. As the students advance in the game, less of them
are classified as excellent. This also happens frequently in the classroom: the very well
performing students are a small part of the class.

6 Conclusions

Serious games are played in computer programming classes to motivate students
overcome the initial natural barriers. However, to maximize the adoption of games in
educational settings, it is important that teachers could track the overall progress of the
students. In this paper, we presented a LA model based essentially on the time spent by
the student to finish each mission. The model classifies the student (as bad, good or
excellent) taking into consideration each mission level. We tested the model during a
fist experiment. We found out that initially most students were classified as bad or
excellent. However, as students advance in the game, they had a more similar per-
formance and more students are classified as good. Although more experiments are
necessary to evolve and validate the model, we believe this information can be used by
teachers to adapt their lessons giving special attention to less performing students.

Acknowledgments. AV acknowledges the doctoral scholarship supported by CNPq/CAPES –

Programa Ciência sem Fronteiras – CsF (6392-13-0) and authorized retirement by UDESC
(688/13). We also want to thank the students that played the game and their teachers that allowed
us to try it with them.

References

1. Vahldick, A., Mendes A.J., Marcelino, M.J.: A review of games designed to improve
introductory computer programming competencies. In: 44th Annual Frontiers in Education
Conference, Madrid, Spain, pp 781–787 (2014)

2. Bayliss, J.D., Strout, S.: Games as a “flavor” of CS1. In: 37th SIGCSE Technical.
Symposium on Computer Science Education, Houston, Texas, pp. 500–504 (2006)

3. Barnes T., Powell E., Chaffin A., et al.: Game2Learn: building CS1 learning games for
retention. In: 12th SIGCSE Conference on Innovation and Technology in Computer Science
Education, Dundee, Scotland, pp. 121–125 (2007)

4. Greller, W., Drachsler, H.: Translating learning into numbers: a generic framework for
learning analytics. Educ. Technol. Soc. 15, 42–57 (2012)

5. Shute, V.J., Ke, F.: Games, learning, and assessment. In: Ifenthaler, D., Eseryel, D., Ge, X.
(eds.) Assessment in Game-Based Learning. Foundations, Innovations, and Perspectives,
pp. 43–58. Springer, New York (2012)

6. Chen, J.: Flow in games (and everything else). Commun. ACM 50, 31 (2007)

Learning Analytics Model in a Casual Serious Game 43



7. Malliarakis, C., Satratzemi, M., Xinogalos, S.: Integrating learning analytics in an
educational MMORPG for computer programming. In: 14th International Conference on
Advanced Learning Technologies, ICALT 2014, pp. 233–237 (2014)

8. Jantzen, J.: Foundations of Fuzzy Control. Wiley, Chichester (2007)
9. Lee, K.H.: First Course on Fuzzy Theory and Applications. Springer, Heidelberg (2005)
10. Juul, J.: A Casual Revolution: Reinventing Video Games and Their Players. MIT Press,

Cambridge (2010)
11. Landers, R.N., Callan, R.C.: Casual social games as serious games: The psychology of

gamification in undergraduate education and employee training. In: Ma, M., Oikonomou, A.,
Jain, L.C. (eds.) Serious Games Edutainment Applications, pp. 399–423. Springer, London
(2011)

12. Nor S., Mohamad H., Patel A., et al.: Block-based programming approach: Challenges and
benefits. In: International Conference on Electrical Engineering and Informatics, Bandung,
Indonesia, pp. 4–8 (2011)

13. Cingolani P., Alcalá-Fdez J.: jFuzzyLogic: a robust and flexible fuzzy-logic inference system
language implementation. In: IEEE World Congress on Computational Intelligence,
Brisbane, pp. 1090–1097 (2012)

14. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

44 A. Vahldick et al.


	Learning Analytics Model in a Casual Serious Game for Computer Programming Learning
	Abstract
	1 Introduction
	2 Fuzzy Logic Controller and Design
	3 NoBug’s SnackBar
	4 LA Model in Computer Programming Learning Games
	5 Implementation and Discussion
	6 Conclusions
	Acknowledgments
	References


