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Abstract. Wearable physiological sensors offer possibilities for the
development of continuous stress detection models. Such models need
to address the inter-individual and intra-individual differences in stress
physiology. In this paper we propose and evaluate a normalization fac-
tor, StressResponseFactor (SRF ), to address such differences. SRF is
computed using physiological features and the corresponding stress level
at a reference point. The proposed normalization factor is evaluated in
a dataset obtained from a free-living study with 10 participants, where
each participant was monitored for 5 days during their working hours
using different physiological sensors. We obtain an average reduction of
mean squared error by up to 32% in models with SRF compared to the
models without SRF.

Keywords: Stress detection · Wearable sensors · Physiology normal-
ization · Machine learning

1 Introduction

Stress, in particular stress in the workplace, is a growing issue of concern world-
wide. Recent studies provide evidence for this. In a survey conducted by the
American Psychology Association [3], up to 60% of the Americans reported
workplace as a significant source of their stress. Also in Europe, up to 25% of
the workers have been found to be at the risk of health problems due to stress
generated in the workplace [10]. It is important to develop an objective measure
to reliably monitor stress in order to enable workplace stress management solu-
tions. Wearable sensors are able to provide a sensing paradigm for continuous
monitoring of stress-related physiological variables. Machine learning techniques
can then be used to develop stress detection models which relate the physio-
logical state to a stress level. However, it is challenging to build such models
due to the variability in stress physiology. The changes in physiology, i.e., the
physiological reaction, and the corresponding perception of stress, i.e., the psy-
chological reaction, in response to a stressor, will depend upon various personal,
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contextual and psychological factors. These factors lead to differences in stress
physiology across the individuals (inter-individual differences) and even within
the same individual over time (intra-individual differences).

Most of the stress-related research studies are conducted in controlled labo-
ratory conditions. As the duration of monitoring is short, only inter-individual
differences have to be accounted for when developing the stress detection model.
This, if addressed by the study, is generally done by normalizing the data from
each individual by their baseline physiological response measured in the rest
condition, at the start of the monitoring. However, controlled studies do not
adequately represent the challenges of free-living conditions [25]. Further studies
and validation of stress detection models in free-living conditions are required. In
such free-living studies, the individuals need to be monitored for multiple days
so as to capture various instances of responses to natural stressors which gener-
ally occur at a low frequency. Therefore, stress detection models for free-living
conditions have to address the intra-individual differences also, in addition to
the inter-individual differences in stress physiology.

The aim of our study is to investigate the development of machine learning
models for stress detection in real-life conditions using wearable sensors. In this
paper we show that machine learning models perform no better than a trivial
model (a model with no learning capability) when differences in stress physi-
ology are not accounted for. To address this, we propose normalization using
StressResponseFactor (SRF ) which is computed with physiological features
at a reference point scaled by the stress level for the corresponding period. Dif-
ferent reference points for the calculation of SRF are comparatively evaluated
in this work. The proposed SRF leads to an improvement of up to 32% in the
model performance, on an average across different machine learning models.

The paper is organized as follows. In Sect. 2, we outline previous works on
stress detection using physiological sensors. This is followed by the discussion of
stress physiology and the proposed StressResponseFactor (SRF ) for normal-
ization in Sect. 3. In Sect. 4, we describe the dataset and the analysis method
used for the evaluation. We present the experimental results in Sect. 5, followed
by the discussion and conclusion in Sect. 6.

2 Previous Work

Stress detection based upon physiology has mostly been investigated in con-
trolled studies [1,8,11,13,19,20,24,28]. Only few stress-related works have been
conducted in free-living conditions. In [12], the authors studied stress detection in
drivers. However, the study protocol was designed to create stressful conditions
based upon the route driven, instead of having natural stressors. The authors of
[18,26] investigated stress detection in free-living but do not address the model
development and evaluation in subject-independent or day-independent settings.
Therefore, the issue of intra-individual or inter-individual differences in stress
physiology has not been investigated in either of those studies.

Some studies conducted in controlled conditions have acknowledged the pres-
ence of differences in stress physiology. In [8], the authors reported 20% reduction
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in classification accuracy, for a binary classification problem of detecting stress
from non-stress state, with a between-subject model (affected by inter-individual
differences) compared to a within-subject model (not affected by inter-individual
differences). The authors in [17] noted that, within an individual, physiological
data from the same day were clustered more cohesively in comparison to the data
across the days, for a given affective state. They proposed various approaches
to address the observed differences across the days, such as: include information
about the day in the model, subtract the day-dependent baseline, or use features
that are less influenced by the daily variability. In [21], the authors developed
a stress detection model using heart rate variability features. They proposed to
normalize the feature values with standardization and include the data from the
baseline physiology for each subject, in order to account for the inter-individual
differences. Authors in [19] addressed the inter-individual differences by devel-
oping a personalized model based upon the modification in the machine learning
algorithm used to train the model. This is done by using the physiological data
of the individual from the neutral state when no stressors are applied. Authors
in [27] proposed to cluster the individuals based upon their baseline physio-
logical features and develop cluster-specific stress detection model as the stress
physiology is non-homogeneous across the individuals. In [11], the authors used
subject’s baseline physiological recordings to normalize the measured physiolog-
ical data and suppress the inter-individual variability. This lead to an increment
of up to 9% in the classification accuracy, for a binary classification problem
of detecting stress from non-stress state. However, all these proposed methods
for the correction of the differences in stress physiology cannot be translated
directly to free-living studies. Majority of the solutions depend on the use of
physiological baseline from the individual. The controlled studies, spanning few
tens of minutes with an explicit baseline measurement phase in the protocol,
facilitate the establishment of baseline physiology. Identification of such baseline
is non-trivial in free-living studies where monitoring spans multiple days.

3 Stress Physiology and Normalization

Every individual has a different body physiology and varying responses to sim-
ilar stressors. As an example, in Fig. 1a, stress profile (distribution of reported
stress levels on a day) of two individuals is shown on the left-hand side. The
stress profile of these individuals is similar, but their respective heart rate pro-
file (distribution of the mean heart rate in the corresponding period) deviate
significantly from each other (shown on the right-hand side). We have used mean
heart rate as an example, it being one of the most commonly used features in
stress detection models [12,20,21,25]. Individuals generally have differences in
stress physiology. Physiological and psychological response to a stressor differ
between the individuals due to a multitude of factors. Moreover, even within
an individual, different physiological responses can be elicited for similar stres-
sors (Fig. 1b). A stress detection model that works in real-life conditions should
be able to account for these differences.
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(a) Different individuals (b) Same individual

Fig. 1. In the figure, distribution of stress level and heart rate (referred to as stress
profile and HR profile respectively) measured over a day is shown. In (a), the profile
for two individuals is shown. Even though they report similar stress profile on these
days, their heart rate profile differs. In (b), profile of an individual on two different
days is shown. As it can be seen from the figure, there can be physiological differences
across the days for an individual, even though the reported stress is similar.

The variability in stress physiology can be corrected by normalization. Let
PV be the physiological feature vector representing the physiological state and
l represent the stress level. An optimal normalization factor could be the value
of PV , when l is at some fixed reference value. The variability of this factor
encompasses the inconsistency in stress physiology. However, it is not possible
to obtain such common reference point across the days and for different indi-
viduals in real-life conditions. The possible values for l on a given day for an
individual are completely uncontrolled. Therefore, there is not one fixed value
of l which is guaranteed to occur on each day for different individuals. We pro-
pose to obtain the reference point based upon some characteristic features in
the stress physiology profile of the day and include scaling with the value of
l in the normalization factor. This allows to compute a factor that accounts
for the variability in the stress physiology, while l can have different values at
the selected reference point. In this work, we empirically evaluate and compare
different reference points that can be used to compute the normalization fac-
tor, using linear scaling by l. If PV ref is the physiological feature vector and
lref is the corresponding stress level at a given reference point, the factor for
normalization, defined as StressResponseFactor (SRF ), is computed as:

SRF = PV ref/(1 + lref ) (1)

where ref represents the selected reference point. Normalization with SRF
computed for a particular day is able to factor the day’s stress physiology profile
in the model. This makes the stress physiology comparable over days and across
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individuals. We evaluate different reference points for computing SRF which are:
(i). Refminstr: Minimum stressful period of the day (ii). Refmaxstr: Maximum
stressful period of the day (iii). Refminhr: The period of the day for which the
heart rate is minimum (iv). Refarbit: An arbitrary period from the day.

These reference points have been chosen on the basis of insights from the
research in stress and other application domains. Refminstr is the closest point
of the day to a baseline rest phase, based upon the reported stress level as an
evidence. As discussed earlier, baseline rest phase has been used to compute
the normalization factor for stress detection model in many controlled studies.
Refmaxstr is the closest point of the day to a hypothetical maximum point in
stress physiology. Normalization based upon maxima is commonly used in other
applications like energy expenditure estimation [15]. Refminhr is the closest point
of the day to a baseline rest phase based upon the physiological evidence, as lower
heart rate is one of the indicator of a calm and resting state. Finally, Refarbit
provides a comparison to establish the merit of using other reference points for
computing SRF. A period from a given day is selected randomly as the reference
point, from among the period for which the user reported their stress level.

4 Materials and Methods

4.1 Data Collection

Study Population: We evaluate our stress detection model using a dataset col-
lected in free-living conditions [25]. A total of 10 healthy participants, 7 females
and 3 males took part in the study. Mean age of the participants was 31.1 ±
11.9 years. All participants were researchers, typically sedentary during the work
day. They were monitored continuously during their working hours for 5 days.
The entire study protocol was communicated to each participant and they were
asked to sign an informed consent form, before the start of the study. The partic-
ipants were allowed to discontinue their participation in the study at any time,
should they decide to do so for any reason.

Sensor Modalities: Wireless body area network developed within the Human++
program [7] was used for synchronous physiological signal acquisition from each
participant. The system consisted a necklace-based device measuring ECG and
3D acceleration, a chest band for respiration monitoring, an EMG device mea-
suring muscle activity at the upper trapezius muscle, and a wrist-band device
measuring GSR, 3D acceleration, skin temperature, relative humidity, ambient
temperature and ambient humidity. This system has been used before for physio-
logical monitoring in various applications like energy expenditure estimation [2],
emotion monitoring [7] etc. We refer to [25] for the details on the sensor setup
used in the study. On the first day of the study, sensors were handed over to the
participants and they were given instructions about its usage. On each day of
the study, participants wore the sensors at the start of the day and took them
off at the end of the working day. For the analysis in this paper, ECG, GSR,
respiration and accelerometer signals (measured from the necklace-based device)
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are used. These signals were acquired at a sampling frequency of 256 Hz, 128 Hz,
256 Hz and 32 Hz respectively by the corresponding sensors.

Reference Stress Level: Various reference measures for the stress level were
obtained from the participants. A smartphone, with an application to collect
annotations every 30 min, was provided to each participant. The participants
annotated their perceived stress level (for the past 30 min period and at the cur-
rent moment) on a Visual Analog Scale (VAS), from 0 (not at all stressed) to
10 (totally stressed). Participants also provided annotations for their activities,
postures, and food consumptions. Cortisol level, a bio-chemical marker of stress
level, was also measured from the participants four times per day using saliva
sampling equipment Salivettes (Sarstedt, Germany). Participants also filled in
the Daily Stress Inventory [5] each day. For the analysis in this paper, only the
self-reported perceived stress level has been used as the reference, it being the
less intrusive probe into the stress level for free-living conditions.

4.2 Features Computation from Sensor Modalities

We use features that have been commonly used in other studies for stress detec-
tion [25]. The features are extracted from the 30 min window corresponding to
the period for which the participant reported their stress levels. All the signals
are processed without any sampling rate conversion.

ECG: We compute different features from the ECG signal based upon the R-
peaks detected using the Pan-Tompkins algorithm [14]. The features extracted
are: i. mean heart rate (mhr) ii. standard deviation of R-R peak intervals (sdnn)
iii. root mean of sum of squared difference of consecutive R-R peak intervals
(rmssd) iv. low frequency component of the spectrum of R-R peak intervals (lf):
power in the 0.04 Hz–0.15 Hz band v. high frequency component of the spectrum
of R-R peak intervals (hf): power in the 0.15 Hz–0.4 Hz band vi. ratio of LF
to HF (lfhf) vii. percentage of R-R peak intervals that are greater than 50 ms
(pnn50) viii. approximate entropy of R-R peak intervals (apen) ix. poincare plot
based features. As suggested in [23], we extract the following features from the
poincare plot: sd1 (length of the major axis), sd2 (length of the minor axis),
sd1/sd2 (ratio of the axes).

GSR: The features extracted from the measured GSR signal are: i. skin conduc-
tance level (scl) ii. signal power of the skin conductance (scp) iii. skin conduc-
tance response rate (scrr) iv. signal power in the second order difference of the
skin conductance (scdiff2).

Respiration: We extract respiration rate (resprate), the number of respiration
cycles per minute, as a feature from the respiration signal.

Accelerometer: We extract the magnitude of motion (mom) feature from the
measured 3-D accelerometer signal. This is computed as the mean of the mag-
nitude of the 3-D motion vector, mom = 1

N

∑N
i=1

√
accxi

2 + accyi2 + acczi2.
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4.3 Data Analysis

We use regression models for the prediction of the stress level using physiological
features, as the reported stress levels are in a continuous scale. Random Forest
(Rforest) [6] for regression, Lasso [22], Support Vector Regression (SVR) [9] with
epsilon-insensitive loss function, and k-Nearest Neighbours (k-NN) have been
used in our analysis.

4.4 Evaluation Method and Metrics

We use leave-one-participant-out cross-validation to evaluate the performance of
the models, using mean squared error (mse) as the performance metric. A trivial
regression model is evaluated to obtain a baseline against which the performance
of other regression models is compared. A trivial regression model is defined as
a model which provides the mean of the labels for the data in the training set,
as the constant prediction output. Unlike classification problems, where baseline
performance can be established with the class prior (e.g. 50% accuracy on a
balanced binary classification problem), no such prior-based baseline can be
established for regression problems. The performance of a trivial model helps to
establish an alternate baseline. Using mse or rmse (root mean squared error) as
a model evaluation metric to compare with the baseline from a trivial or other
regression models has been used in other studies [4,16].

SRF is used for normalization in a model by scaling all sample points from
the day with the factor. The reference point used to compute SRF is excluded
from the analysis for all the models. Thus each model, regardless of its usage of
SRF, is evaluated with the same training and test set for comparison. We also
compare other standard normalization methods, namely a min-max scaler (scales
the data between 0 and 1) and a standard-scaler (removes the mean and scales
the data to have a unit variance) applied to the data from each day.

The effect of SRF on model performance is summarized with the within-
model and over-baseline gain. If msemodel is the mse obtained from a
model when no normalization is used, msemodelSRF is the mse obtained
from the model when SRF is used for normalization, and msetrivial is the
mse obtained from a trivial regression model, then the within-model gain is
defined as: msemodel−msemodelSRF

msemodel
∗ 100 and over-baseline gain is defined as:

msetrivial−msemodelSRF

msetrivial
∗ 100.

We tune the parameters of regression models with cross-validation within the
training set. For Rforest, the number of estimators ({101, 201, 301}) and the max-
imum number of features ({sqrt(total number of features), log2(total number
of features)}) to be used for the split of decision trees are tuned. In
Lasso, α (the regularization parameter) is tuned automatically with iter-
ative fitting. For SVR, we use a RBF kernel and tune ε ({i/10}10i=1), γ
({2i}8i=−8) and C({2i}8i=−8). In the k-NN model, the number of neigh-
bors k ({3, 5, 7, 9, 11}), weights ({uniform, distance}) and distance-metric
({′euclidean′, ′manhattan′, ′chebyshev′}) are tuned.
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In all evaluations, data in the training set is scaled with a min-max scaler to
restrict the feature space between 0 and 1 and these scaling parameters are also
propagated for scaling data in the test set. All tests for significance are evaluated
with a paired t-test at a significance level of 0.05.

5 Experimental Results

In our evaluation setting, the training and test set, on an average, consist of 630
samples and 70 samples respectively. In Fig. 2, the evaluation results for different
regression models with and without normalization are shown. Significant reduc-
tion in mse is obtained with our proposed normalization method. The model
performances for SRF computed with different reference points are shown in
Fig. 3.

We proposed to compute SRF based upon the reference point from each
day. This is compared with the model performance when a single SRF is com-
puted per participant with an assumption that there is no variability in stress
physiology within an individual. Two different methods for computing a single
SRF per participant are evaluated. The first method pools all the data of a
participant from across the multiple days together, establishes a single reference
point in the pooled data and computes SRF based upon this reference point.
The second method computes SRF from the reference point in the first day.

Fig. 2. mse obtained for different regression models evaluated in leave-one-participant-
out setting. The performance of models without normalization and with different nor-
malization methods is compared. The model performance for the normalization with
SRF is reported with the reference point considered at the minimum stressful period
of the day (Refminstr).
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Fig. 3. Performance of the models with normalization factor computed from different
reference points. For Refarbit, the average performance from 8 runs is reported.

Fig. 4. Performance of the models with a single SRF per participant by pooling data
of the participant from all the days: RF(participant), a single SRF per participant
based upon the reference point obtained from the first day: RF(first day) and a SRF
for each day of the monitoring: RF(day). The results are reported with Refminstr as
the considered reference point.

The comparison result is shown in Fig. 4. An improvement in the model perfor-
mance is obtained only when SRF is computed for each day per participant. In
Table 1, we report the obtained improvement in the model performance due to
SRF, using within-model and over-baseline gain metrics.
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Table 1. Within-model gain and over-baseline gain (defined in Sect. 4.4) for different
models and reference points. For Refarbit, average gain obtained from 8 runs is reported.

Within-model gain (%) Over-baseline gain (%)

Rforest Lasso SVR k-NN Average Rforest Lasso SVR k-NN Average

Refminstr 28.90 23.38 36.57 39.04 31.97 24.4 21.16 32.36 26.14 26.01

Refmaxstr 24.50 21.10 28.97 35.02 27.39 23.00 20.00 24.00 23.00 22.50

Refminhr 20.71 28.97 32.41 30.76 28.21 16.03 26.58 27.84 16.45 21.73

Refarbit 22.40 18.03 22.35 28.05 22.70 17.87 14.89 15.74 14.89 15.85

6 Discussion and Conclusion

Without normalization, stress detection model performs no better than a trivial
model (Fig. 2). This result highlights the discussed differences in stress physi-
ology, over time and across the individuals. The relation between physiological
features and stress level cannot be modelled well because this relation is not
comparable across the days and individuals. With min-max scaler and standard
scaler to normalize the data from each day, still no improvement in the model
performance is obtained. The use of SRF for normalization leads to a significant
improvement in the model performance. This is because SRF helps to include
some characterization of the stress-physiology profile of the day into the model,
thus making stress physiology comparable across the days and individuals. The
characterization obtained from any of the reference point in the day improves the
model performance (Fig. 3). Using within-model and over-baseline gain metrics
as the comparison criteria, Refminstr gives the best performance in our evaluation
setting (Table 1). The results shown in Fig. 4 depict that the SRF needs to be
computed for each day, highlighting the presence of intra-individual differences
across days. Stress detection in free-living requires periodic identification of the
normalization factor to account for the temporal variations in stress physiology.

One limitation of the proposed SRF is that the normalization factor is depen-
dent upon the availability of labeled data points. Normalization factor which
can be derived directly from the features, without the need of corresponding
label, would be desirable for deployment scenarios. For future work, it would be
interesting to investigate the temporal characteristics of the features at different
label-independent reference points or ranges (e.g. during morning period) for
such normalization factor. Nonetheless, the analysis presented here makes first
step towards robust stress detection models in free-living conditions identifying
the differences in stress physiology as one of the key challenges for such models.

To conclude, stress physiology shows variability due to the effects of differ-
ent personal and temporal factors. A stress detection model needs to account for
the differences stemming from these factors. The StressResponseFactor (SRF )
proposed in this paper helps in addressing these differences by characterizing the
stress physiology profile of the day into the model. We were able to validate its
contribution to the stress detection model, using a dataset collected in free-living
conditions. It is desirable to further investigate and validate stress detection mod-
els with a study involving long-term monitoring of a larger number of individuals.
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