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Abstract. ActiDote —activity as an antidote— is a system for man-
ual wheelchair users that uses wireless sensors to recognize activities of
various intensity levels in order to allow self-tracking while providing
motivation. In this paper, we describe both the hardware setup and the
software pipeline that enable our system to operate. Laboratory tests
using multi-modal fusion and machine learning reveal promising results
attaining a F1-score classification performance of 0.97 on five different
wheelchair-based activities belonging to four intensity levels. Finally, we
show that such a low cost system can be used for an easy self-monitoring
of physical activity levels among manual wheelchair users.

Keywords: Self-tracking · Wheelchair · Handicap · Wireless sensors ·
Wearables · Machine learning

1 Introduction and Motivation

Physical inactivity has been identified as a major contributor to the exacerba-
tion of physical illnesses [9]. The WHO identified it as the fourth leading risk
factor of global mortality after high blood pressure, tobacco use and high blood
glucose. Therefore, in recent years, many actions against inactivity have come
to the fore [12]. For instance, diverse pedometer devices have been developed
to help people reach various physical activity goals, like walking 30 min per day
or completing 10’000 steps per day. Moreover, many smartphone applications
attempt to help people self-track their physical activity and motivate them to
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continuously exercise. Unfortunately, an equivalent application for people using
wheelchairs is missing and there is a clear absence of motivational devices that
can support the self-tracking of physical activity among people with spinal cord
injury. The few studies that have dealt with this issue concluded that current
commercial physical activity measurement devices are not appropriate for wheel-
chair users [7], and to make things worse, those users very often adopt sedentary
habits as a consequence of their disability. The result is that obesity rates for
adults with disabilities are higher than for adults without disabilities [17].

In this paper we present ActiDote —activity as an antidote— a system based
on wearable and wheelchair-attached sensors that wirelessly communicate with
a smartphone to allow the tracking of the physical activity of people with motor
disabilities using wheelchairs. Our system integrates machine learning algorithms
that analyse the sensor data to identify the intensity of the physical activity
being realized, and provides a daily (and weekly) summary of activities as a
feedback to the user. This paper is organized as follows: in Sect. 2, we present
the state-of-the-art in the domains of physical tracking and activity recognition
among disabled people. In Sect. 3, we describe the Actidote system, namely the
hardware setup, the activity recognition approach and the feedback visualization.
Section 4 presents experimental tests and results and finally, Sect. 5 presents our
conclusions and future work.

2 Related Work

The increasing availability of wearable sensors embedded in smartphones,
watches and physical activity trackers has opened the door to a wide num-
ber of applications, mainly in health and wellness improvement. Many devices
and services help with tracking physical activity, caloric intake, sleep quality,
posture, and other factors involved in personal well-being (e.g., the so-called
Quantified-Self movement1). One typically collects data by means of sensors like
GPS, accelerometers, gyroscopes, barometers, heart rate meters, thermometers,
microphones, etc. As far as the physical activity monitoring is concerned, recent
research and development has allowed to leverage the power of accelerometers for
building systems capable of estimating energy expenditure and to achieve mass
market penetration (e.g., Jawbone, Fitbit, Nike+, Polar Loop, Garmin vivofit).
Unfortunately, it has been found that these general public devices do not pro-
vide accurate estimates of the energy expenditure of people using wheelchairs,
in particular, during wheelchair propulsion [3,7]. Even the SenseWear Armband
(SWA), which has been validated as a means to estimate energy expenditure in
overweight children, in patients with cancer, and healthy children, has provided
inaccurate measures among the disabled population [15].

Researchers have thus attempted to estimate energy expenditure of manual
wheelchair users using activity-dependent models [6], increasing the sampling fre-
quency and computing features of the raw data [5], and by fusing multiple modal-
ities (e.g., accelerometry and heart rate monitoring) [15]. In [5], Garcia-Masso
1 http://quantifiedself.com.

http://quantifiedself.com


A Wireless Sensor-Based System for Self-tracking Activity Levels 231

et al., obtained accurate estimations of energy expenditure on paraplegic per-
sons using a cumbersome system with four wearable sensors (Actigraph GT3X
accelerometers), one on each wrist, one on the waist and one on the chest. Finally,
there has been some work attempt to better estimate energy expenditure with
the use of Machine Learning techniques to derive data-driven models that exploit
data from accelerometers or multiple sensors [10,13,14,16], but without involv-
ing people with spinal cord injury.

3 A Data-Driven Approach to Physical Tracking

The amount of energy spent by a person during a given activity can be assessed
using a mechanistic approach if the right physiological variables are measured.
However, these measurements are not easy to perform due to different prac-
tical constraints (e.g., sensors are expensive and not portable). Data-driven
approaches offer an alternative to the mechanistic analyses which have been tra-
ditionally used for modelling complex metabolic phenomena. Data-driven models
try to discover the relationships between the variables involved in the analysis
from the data, while in mechanistic approaches these relationships are based
on prior theoretical knowledge about the phenomenon. Indeed, in a data-driven
approach, the variables used do not necessarily have a physiological meaning,
and in most of the cases they are mere surrogates to a quantity that is difficult
to measure. One of the main strengths of a data-driven approach is its robust-
ness. The fact of using the acquired data to build the model provides a better
tolerance to sensor imprecision given its non-dependence on sensor calibration
or precise sensor positioning and orientation. While mechanistic analysis relies
on the understanding of a physical phenomena that requires well defined inputs
for obtaining an accurate solution, data-driven approaches accept not to under-
stand the phenomena, making it less dependent on the accuracy of the inputs.
Our approach is thus to acquire as much pertinent sensor data as possible for
further identification of the required inputs to build the model.

3.1 Hardware Setup

In order to acquire the pertinent data to build our data-driven model, we have
designed a set of wireless sensors to be embedded on an ordinary wheelchair.
Our main goal is to accurately estimate the energy expenditure of the user,
specifically focusing on the expenditure due to physical activity. The type of
physical activity can be estimated through different motion sensors placed on
the wheelchair and on the user body. However, activity intensity is impossible
to infer from inertial motion sensors only. For instance, displacing a wheelchair
on a regular surface will require much less energy than on a sandy surface, even
if motion sensors read similar data. Static effort is another example: it can be
more physically intensive to stay static on an uphill than to move on a downslope.
Force sensors on the wheels can help estimate such physical intensity.

We have thus equipped an ordinary wheelchair with a set of several Blue-
tooth Low Energy (BLE) sensors in order to build a complete physical activity
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Fig. 1. Wireless sensor board Fig. 2. Load cell coupled to the wheel

Fig. 3. Modified wheel

monitoring system (PAMS). The system is composed of five sensors allowing to
collect data regarding the movements and the effort done by the wheelchair user.

We have designed a wireless sensing board to be fixed on the wheel. It contains
a gyrometer and accelerometer device used to determine the wheel speed and an
amplifying circuitry for connecting the strain gauges of three load cells (Fig. 1).
The wheel has been modified in order to assess the forces applied to it through
measuring with load cells the mechanical deformation between the hand rim and
the wheel. We have thus replaced the hand rim separators by three load cells in
order to measure the tangential force applied to the wheel. Figure 2 depicts how
each load cell has been coupled to the wheel. The strain gauges on each load cell
are connected to form a Wheatstone bridge topology. The two output signals
from the bridges are then amplified, compared and filtered. Finally, the result is
read by an embedded microcontroller through an analog-to-digital converter to
get the strength value. Figure 3 and Table 1 the complete hardware setup.

Table 1. Summary of the sensors used

Location Device Sensors

Wrist Smartwatch Moto360 Accelerometer & Heart Rate

Chair bottom BLE113 Accelerometer & Gyroscope

Wheel BLE113 Accelerometer & Gyroscope

Wheel push ring Load Cells (3x) Strain gauges
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A second wireless sensing board is directly fixed to the chair. This one is also
equipped with accelerometer and gyrometer but without strain gauge interfaces.
Its goal is to measure wheelchair inclination for discriminating between upslope,
downslope and flat surfaces as well as rotations of the wheelchair.

Both sensing boards are equipped with a Bluetooth Low Energy (BLE) mod-
ule. The module is the BLE113 developed by Bluegiga. It integrates a calibrated
antenna at 2.4 GHz and a low consumption microcontroller. The main interest in
this all-in-one module is the reduction of the development time on the hardware
design and the full implementation of the Bluetooth stack usable with a simple
script language named BGScript. Finally, a commercial smartwatch (i.e., the
Moto 360) is fixed on the user’s wrist. It is also equipped with motion sensors
and is used to detect arm motions in order to improve the model with the detec-
tion of other gestures, like auto-propulsing his chair, playing ping-pong or lifting
weights. Moreover, this smartwatch is also equipped with a photoplethysmogram
sensor used to monitor the users heart rate (HR). HR measurements should
help to enhance the model by directly using physiological data for estimating
specific users caloric expenditures needs and capacity. All the above described
collected data from custom sensors and the commercial smartwatch are trans-
ferred through BLE to an Android handheld device carried by the wheelchair
user in order to further perform data analysis.

3.2 Activity Recognition

In our project, activity recognition was first envisioned as an intermediate objec-
tive, given that we aim at estimating energy expenditure in the end. However,
in this paper we present a system that allows for self-tracking of physical activ-
ity levels taking already advantage of the activities being recognized, as in [4].
Indeed, as we will show in Sect. 3.3, a graphical summary of the amount of time
spent on activities of different levels of intensity can be exploited in a straight-
forward way to motivate more regular physical exercise. The processing chain
of the sensor data [2] starts with the sensor-data acquisition: a stream of sen-
sor samples is obtained and the sensor data stream is preprocessed. A detailed
explanation of this activity recognition chain is described in Sect. 4.

3.3 Feedback Visualization

We found important for the end user to have some kind of feedback available. We
developed a front-end web interface that shows both the current day summary
and a history of the previous week. The interface in its current state is depicted
in Fig. 4. All statistics are related to the following intensity levels: Sleeping (or
None), Light, Moderate, and Vigorous. For now, this interface is in a beta test
state. In a future version of this project, we envision that the users will be able
to log on to this interface and see these statistics in near real time.
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Fig. 4. The web interface for the end user feedback

4 Experiments and Results

4.1 Data Collection

In order to recognize different activities, we started by determining the activ-
ities that should be detected and learned. This list contained activities such
as: resting, moving (e.g., at different speeds, on different ground types, given
different slopes, self-pushed, pushed by a caretaker), desk-work-like (e.g., desk
work, browsing on computer, eating, being on the phone) or even replacements
(e.g., in the chair, from the wheelchair to the toilet). Moreover, these activities
were grouped in several classes of intensity ranging from sleeping (or None) to
vigorous. This was done to pave the way for the energy expenditure predicting
model that we will develop in a future phase of this project. For the machine
learning to take place, the first step was to collect data corresponding to the goal
that needs to be achieved. In this case, it meant to use the sensors we described
to collect the data of the activities we mentioned above. This operation was
performed by an Android handheld device. The data captures followed a proto-
col that encompassed five activities: resting, desk work, self-pushing at medium
speed on a standard flat indoor floor, self-pushing on an ascending slope, and
external pushing by a caretaker. Therefore, each activity defined in the list had
an intensity level of respectively: none, light, moderate, and vigorous. The pro-
tocol required no predefined order for doing the activities, but defined that each
activity was to be performed for five minutes straight. This was a precaution
to make sure that the model had enough examples for each activity and was
therefore able to learn all of them correctly. This protocol was obviously only
designed for laboratory purposes and was used to train a model to recognize
such activities. The long term goal was to be able to classify captures free from
any protocol, such as captures that any person with Spinal Cord Injury would
do in a normal day. To ensure that our model performed well, we chose to train
it on a specific data capture, and then to test it on another data capture and the
other way around. This way, we could be sure that our predictive model gener-
alized well on the activities themselves and not on a spurious setup depending
on some day-dependent variables. Furthermore, we grouped the obtained data
following an early fusion pattern. We downsampled the Moto 360 accelerometer
data by decimation from 50 Hz to 15.63 Hz and upsampled the Moto 360 heart
sensor from 1 Hz to 15.63 Hz by repetition. Therefore, at the end of the data
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collection step, we had two fully labelled datasets of roughly 25 min with 5 min
by activity and a 15.63 Hz sampling rate (therefore with a sample for each sensor
every 64 ms).

4.2 Feature Extraction

To perform the feature extraction, we chose to roll two windows of respectively
5000 and 1000 ms over the data, in order to have two order of magnitudes of
what we can consider a context for every sample. We computed the median,
standard deviation and energy of the signal of the windows leading to each sam-
ple (included). We extracted these values for the three axes-accelerometer on
the wrist, the three axes-accelerometer on the chair, the three axes-gyroscope on
the wheel and the three load cells on the pushing ring. Unfortunately, the heart
rate sensor from the Moto 360 on the wrist proved to be too noisy and we had
to drop it from our analysis. We were therefore left with two captures of respec-
tively 22471 samples (24 min) and 23439 samples (25 min), with the 72 same
features. As a lot of these features are probably redundant and correlated, the
best choice for an off-the-shelf model is random forest. This is a model introduced
by Breiman in 2001 [1] that bags (short for bootstrap aggregates) classification
and regression trees (CART) and randomly samples a subset of the features at
each split. In doing so, the model averages many noisy but approximately unbi-
ased models, and hence reduces the variance. For classification, a committee of
trees each cast a vote for the predicted class. As trees are invariant under linear
modification of input, this also speeds up the activity recognition chain since no
further preprocessing is required.

4.3 Analysis and Results

As stated before, we wanted to make sure that our model performed well by
training it on a specific data capture and testing it on the other one. We also
had to do it the other way around to make sure that the model performs equiv-
alently, otherwise it would indicate an inherent problem with the training step.
Regarding the temporal resolution, we decided that in order to assess the inten-
sity, it made no sense to predict very short activities. We decided to refine the
predictions by rolling a modal filter of 1 min length over them. Indeed, the end
user will have no interest in knowing every activity he did at a very high resolu-
tion (64 ms); he will be more interested in a more global feedback about his day.
In doing so, we make sure that a very short change of activity will be erased.
This can both improve or worsen the predictions depending on the conjuncture,
but it will always enhance the feedback we can give to the end user.

Experiment 1: All Features. The first experiment we tried was to feed into
our model all of the features we extracted. For both ways of training and pre-
dicting (train on first capture and predict on second capture, and the other way
around), we repeated the training step ten times and we computed both the
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Table 2. F1-scores on training, raw predictions and refined predictions for both train-
ing orders

Training Set Prediction Set Train Test (raw) Test (refined)

Capture 1 Capture 2 0.9998 ± 0.00 0.7754 ± 0.01 0.7678 ± 0.03

Capture 2 Capture 1 0.9999 ± 0.00 0.9314 ± 0.00 0.9874 ± 0.00

normalized confusion matrices and the weighted F1-scores of the raw resulting
classification and of the refined predictions as described in Sect. 4.3 with the
modal filter. We used the ensemble package of scikit-learn [11] for building our
random forest classifier. For the parameters, we used 1000 trees, the entropy
criterion, and used the square root for selection of the maximum number of fea-
tures at each split. These are standard parameters when using a Random Forest
classifier.

The results of this first experiment are described in Table 2. Each row in
the table represents a different order for training and predicting, each column
contains results on the training set (by out-of-bag score), on the testing set with
raw predictions and on the testing set with refined predictions.

As we see in Table 2, both ways of training and predicting are not equiva-
lent. Indeed, the score on the test set when trained of the first capture drops
dramatically compared to the same score when trained on the second one. This
indicates a disparity between the two captures. This is a recurring problem in
machine learning: when not enough data is available, the noise can sometimes
be mistaken as signal. The more data we have, the more the noise gets averaged
among captures and the easier the signal can be recognized.

In our case, we analyzed this problem as being caused by proxy features.
Proxy features are features that seem to be discriminant in a given dataset
but are not in reality. We included an example for illustration: In Fig. 5, we
see that if we look at the first capture, this variable —the energy of the chair
accelerometer signal in the x-axis over the last 5000 ms— seems excellent to
separate activity classes Still and Work. On the other hand, we see in the second
capture that this variable has actually no importance and does not separate these
two activities at all. In this case, we can deduce that the proxy variables used
did not accurately represent both activities. A classifier, even a human one,
trained on the first capture will obviously make mistakes when predicting the
second capture. Conversely, a classifier trained on the second capture will select
another variable to separate these activities and will probably separate correctly
these activities. This example explains the dispaired results shown in Table 2.

This problem is caused by lack of data and should disappear as we collect
more data, but in the meantime, a good way of overcoming that issue is to
manually select features that we know from expert knowledge and bio-medical
modelling are relevant for characterizing the activities we defined.
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Fig. 5. A “proxy” feature in first (left) and second (right) capture, in activities Still
and Work

Experiment 2: Manually Selected and Engineered Features. In this
experiment, we crafted and hand-picked features that we know are important
for the resolution of this problem. We therefore ensured that our model only
got features that are relevant in every case. Indeed, every feature is certified by
expert knowledge to be of influence in the activity we hope to recognize. These
features were namely: the sum of the standard deviation of the three load cells
over the last 5000 ms, the sum of the standard deviation of the wrist three-axis
accelerometer values over the last 5000 ms, the median orientation of the chair in
the longitudinal plane over the last 5000 ms, the standard deviation of the wheel
angular speed in the z-axis (longitudinal ground speed) over the last 5000 ms, the
median wrist acceleration in the x-axis (longitudinal acceleration) over the last
5000 ms, and the median wrist acceleration magnitude (norm of the three axis
vector) over the last 1000 and 5000 ms. We built models and estimated their
performance as explained in Sect. 4.3. These results are presented in Table 3.
The model is now working as expected, with training orders being equivalent
in terms of performance. To illustrate this, Fig. 6 depicts the confusion matrices
of ground truth against raw (left) and refined (right) predictions with the first
capture used as training and second capture used as testing, while Fig. 7 shows
the same matrices but with the reverse training order.

We highlighted the effect, positive in this case, of the modal filter in Figs. 8
and 9. These figures present the raw (top) and refined (middle) predictions on
the second capture (when the model was trained on the first one) in Fig. 8 and
on the first capture (when the model was trained on the second one) in Fig. 9.

Table 3. F1-scores on training, raw predictions and refined predictions for both train-
ing orders with manually selected features

Training Set Prediction Set Train Test (raw) Test (refined)

Capture 1 Capture 2 0.9995 ± 0.00 0.8923 ± 0.00 0.9550 ± 0.00

Capture 2 Capture 1 0.9985 ± 0.00 0.8844 ± 0.00 0.9933 ± 0.00
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Fig. 6. Confusion matrices of raw (left) and refined (right) predictions using first cap-
ture as train test and second capture as test set

Fig. 7. Confusion matrices of raw (left) and refined (right) predictions using second
capture as train test and first capture as test set

Fig. 8. Timeline of ground truth (bottom) against raw (top) and refined (middle)
predictions using first capture as train test and second capture as test set

Fig. 9. Timeline of ground truth (bottom) against raw (top) and refined (middle)
predictions using second capture as train test and first capture as test set

We also see that this filter has a lag effect causing the detection of a start of
a new activity to be slightly delayed comparing to its real start. This lag is
approximately equal to 30 s (half the filter size), which is a negligible error.
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We can therefore conclude that the system in its basic version can recognize
the defined activities with a F1-score of roughly 0.9, which is already an excel-
lent score for an activity recognition task similar to what is currently achieved
in [8]. In its refined version, with a 1 min modal filter applied to it, the results
seem to climb around 0.97. Of course, this is an even better score, but its contri-
bution does not only encompasses the score enhancement, but also —and more
importantly— gives a much clearer feedback to the user. Knowing the system
is able to correctly classify such activities, it is therefore also able to separate
activities with different intensities, since the activities are grouped into intensity
levels.

5 Conclusions and Future Work

In this paper, we presented our ActiDote —activity as an antidote— system
which in its current state can accurately detect and recognize activities of dif-
ferent intensity levels. Indeed, a weighted F1-score of 0.97 has been attained on
two different data captures. This means that with the training and the testing
data belonging to different experiments, the model was still able to perform well.
In order to have a robust model that can adapt to different wheelchairs and dif-
ferent users, it is mandatory to train it on more data. This is why one of the
next step is to capture labelled data for a larger group of user with the current
setup. This should also avoid having to select the features to feed into our model.
Indeed, the noise contained in each individual capture should theoretically be
averaged out.

The system as described is available at a lower cost compared to similar
setups and gives the end user a very accurate feedback. Therefore, not only
does it provide a means for self-tracking physical activity and self-motivation,
but it can also be used for potential continuous monitoring of patients during
rehabilitation. Last but not least, the development of self-tracking devices and
continuous monitoring should indirectly contribute to reduce health costs.

We are currently working on improving the system accuracy by developing
new hardware and software. On the hardware side, we are currently developing
our own strength sensors based on strain gauges. The main improvement will
consist in measuring the force applied on a radial axis in addition to the tangen-
tial axis already measured. Other sensing elements are also being evaluated like
pressure sensors on the chair surface in order to track posture and activities like
switching chairs (transfer on public bathrooms, etc.) or adjusting seat position
(pressure relief, etc.). As for the software side, we do not only aim at making this
system near real-time, but also capable of recognizing more activities. The next
steps encompass extrapolating an energy expenditure measurement, in order for
the user or caregivers to have a quantitative estimation as feedback.
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