
The Use of Physical Artefacts
in Undergraduate Computer Science Teaching

Edward Currie(&) and Carl James-Reynolds

Department of Computer Science, Middlesex University, London, England, UK
{e.currie,c.james-reynolds}@mdx.ac.uk

Abstract. This paper describes the introduction of the use of physical artefacts
in the teaching of the undergraduate curriculum in the Department of Computer
Science at Middlesex University. The rationale for the change is discussed,
together with a description of the various technologies and the areas in which
they were deployed. We conclude with a discussion of the outcomes of the work
and the conclusions reached, prime amongst which are that the policy has been
successful in motivating and engaging students, with a resultant improvement in
student progression.

Keywords: Physical computing � Microcontroller � Robotics

1 Introduction

The study of Computer Science has always involved a balance of abstract concepts and
practical work. Students sometimes find the former difficult to grasp in isolation and in
the curriculum, they are not always closely integrated with the latter. Practical com-
puter programming courses have often involved exercises that are not related to
real-world problems and are often considered by students to be rather dull. This, in
turn, has tended to make programming and other problem solving tasks seem to stu-
dents like a necessary evil, rather than something exciting and engaging. This can affect
the amount of effort that students are willing to put into their study, which together with
the incremental nature of programming, tends to result in the ‘falling behind and
staying behind’ reported by [1, 8]. This effect has been noted in programming courses
at all levels and in all countries and cultures worldwide. Those who succeed in pro-
gramming and problem solving tend to be those who immerse themselves in the
subject. There is evidence that the use of physical artefacts can promote the necessary
level of engagement and motivation for successful study in computer science. In the
rest of this paper, we describe some examples of the deployment of physical tech-
nologies within the Information Technology and Computer Science undergraduate
programmes at Middlesex University and discuss some of the outcomes.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
G. Vincenti et al. (Eds.): eLeot 2016, LNICST 180, pp. 119–124, 2017.
DOI: 10.1007/978-3-319-49625-2_15



2 Related Work

Much of the existing literature focuses on encouraging the uptake of STEM-based
subjects and use of physical computing in schools [3]. In the UK there has been a
dramatic shift in the school curriculum and a new focus on computer programming;
however this is not yet reflected in the experiences of those who are entering under-
graduate study. Blikstein [2] has noted that some platforms such as Arduino expose
children to too much detail, at too low a level of abstraction. Kato [6] has attempted to
address this by the development of visual interfaces. This does not seem to be the case
at undergraduate level, where Okita’s [7] work suggests that students who learn via low
transparency text based programming languages not only did equally well in assess-
ment as those students who learned in high transparency visual coding environments,
but additionally were better placed to solve new problems with unfamiliar materials.

Herger and Bodarky [5] identified, in workshops with schools, that it is important to
manage time and resources effectively in order to complete planned exercises and this
is equally important at undergraduate level.

Cambron [4] explored the use of Arduino in a first-year robot-based project as a
first experience of electronics and processors and found it “invaluable for retention
purposes”. Rubio et al. [9] also found value in increased retention and engagement and
the number of students who learned effectively. They also identified that the mean
grades and number of high performance students did not change significantly.

3 Context

In 2013, the undergraduate programmes in computing at Middlesex University
underwent a revalidation. For many years, students had stuggled with the computer
programming and problem-solving strand of the BSc Computer Science (CS) pro-
gramme, while the BSc Information Technology (IT) programme was very much
management-oriented, with minimal computer programming content. Many CS stu-
dents, after struggling with the programming content in the first year of their course,
would transfer to the IT programme to avoid further study of programming. We were
unhappy with this role for the IT programme, and with the poor progression rate of
students on the CS programme, and it was decided that the revalidated programmes
should both have a strong programming and problem-solving core thread. Furthermore,
they should embrace the use of physical artefacts to motivate and engage students in
project-based learning. Through this, students could be exposed to concrete imple-
mentations of theoretical concepts to reinforce their understanding. We now describe
some of the technologies used and the areas in which they were deployed.

4 Arduino Microcontrollers

The use of Physical Computing in the IT curriculum was introduced 5 years ago as a
trial with final year students and fully integrated since the revalidation of the pro-
gramme. First year undergraduates take a module that introduces concepts such as

120 E. Currie and C. James-Reynolds



smart homes, embedded systems, sensors and automation, personal online presence,
and simple machine learning. Six weeks are dedicated to Physical Computing work-
shops using Arduino. Although most of the coursework is completed over a period of
three weeks, it was considered to be important to give the students time to try out ideas
and to encourage a sense of “playing” with the technology. The two-year trial had
highlighted some of the difficulties students had with mapping schematics to bread-
boards and identification of components such as resistors. Students were also frustrated
with the practical difficulties of rewiring breadboards at the start of each taught session.
A kit was therefore developed as part of an undergraduate project [14], that allows the
use of a wide range of sensors; however, these were prewired and accessed by simply
patching them in using 3.5 mm jack to jack patch cables. Students were originally
given a specific group challenge, but are now presented with a set of criteria to which
their projects must conform; the actual project is negotiated with the tutor. As the
students concurrently study a Java programming module, the challenge is not just about
writing code from scratch, but the process of reuse and modification of existing code,
for incorporation into the system. Through this, students gain insights into the tech-
niques of real-world development of software projects. In practice over the last two
years, approximately 40% of students have chosen to move beyond the kit to using
breadboards directly and have had the technical expertise to feel comfortable with this.
There have been a range of different reasons for this, but greater flexibility in devel-
oping their products seems to have been paramount among these. Students post their
work on Social Media, which is an important part of maintaining a portfolio and
personal profile, but also serves to allow others to critique their work and for
employers, family and friends to view their work in an easily accessible form.

Arduino microcontrollers have also been deployed in the first year of the CS
programme. Here, they are used for group-based projects over a period of weeks,
running in parallel with the students’ other studies. These projects are used to give the
students practical experience of otherwise rather abstract concepts such as finite state
machines, set theory, functional programming and propositional logic. The students
learn Racket, a multi-paradigm dialect of Lisp, and they are able to control the Arduino
directly with this language by running the Arduino Service Interface Protocol (ASIP),
which was developed for this purpose and is available at [11]. Typical projects have
included a three-way traffic light system and games such as noughts and crosses and
battleships. CS students also learn about assembly programming with the Arduino,
through use of the Atmel Studio simulator.

In a third year Multimedia Engineering module, students use the Arduino to
develop a multimedia experience. This is criteria-based and must include the use of
sensors and the control of media. The assessment criteria include “meaningful inter-
action” and a “fun” component as well as an overview of the processes involved. As in
the first year, plenty of time is given to explore ideas. Those students who engage with
the work produce a wide range of interesting artefacts. It is permitted to use existing
code, but this has to be modified or adapted to give a new type of interaction, with any
code written by others being clearly referenced. Examples of projects include ‘light
chimes’ – sensing the position of a swinging torch to generate music, interactive
T-shirts that respond to proximity of others and smart home automation.

The Use of Physical Artefacts 121



5 Robots

A bespoke robotic platform (MIRTO; Middlesex Robotic plaTfOrm) was developed
for use with the first year CS students [12]. This comprises a set of HUB-ee wheels
[13], an Arduino Teensy and Raspberry Pi computer running Linux. The robot is
equipped with quadrature encoding, wireless card, bump sensors and infrared detectors
for use in line-following algorithms and similar. The Teensy interfaces to these com-
ponents and the Raspberry Pi is connected to the Teensy via its serial port. The ASIP
protocol is used to enable the robot to be controlled by Racket programs loaded onto
the Raspberry Pi.

The robots are used in projects that reinforce a number of CS concepts. For
example, the functional programming concept of higher order functions is used to map
Arduino pin-setting functions across a number of pins and the concepts of functions as
first class objects and side effects are demonstrated through lists of functions employed
in causing the robot to explore an unknown area. Another example is the use of Racket
Contracts to specify required robot behavior [10]. Through the use of Linux, students
also gain familiarity with use of a command line interface, which most are unfamiliar
with, having grown up using only graphical user interfaces.

Student projects using this technology have included PID line-following algorithms
using the IR sensors and controlling robots remotely through web pages, the Twit-
ter API and email servers. A number of students go well beyond the taught material and
one team competed successfully in the Eurobot national championships, coming 4th out
of 17 teams.

6 Logic Circuits

The CS students also build simple combinatorial and sequential logic circuits using
components such as logic gates, adders, clock sources and breadboards. This reinforces
their knowledge of a number of concepts, including propositional logic. The latter is an
example of the holistic approach to the curriculum, as students see the same concept in
their study of fundamental underpinnings and in their programming workshops.

7 Discussion and Conclusions

Some of the benefits of engaging students with a physical computing approach are

• Motivation through hands on experience
• A chance to experience a whole lifecycle from concept to prototype
• Opportunities to engage with family, friends, potential employers and contribute to

online communities
• Understanding testing strategies and designing tests
• Opportunities to be creative with open-ended assignments
• Engaging with current debate about sensors/data/internet of things

122 E. Currie and C. James-Reynolds



Motivating students and encouraging an exploratory outlook in their learning is
important in terms of retention and also for their induction into university culture.
Working with physical manifestations challenges students perceptions of computing
and require them to work in new ways, with success in the set tasks giving them
confidence to tackle new problems. One of the key areas that is explored through
physical computing is the need to develop test strategies to clearly identify the nature of
any problems. Errors may lie in hardware, software or the communication between
devices and students need to develop analytical skills to identify where the problems
lie. Physical computing also lends itself to group work and in the first year, this allows
students to develop a stronger cohort identity.

For first year students, assessment sets a threshold for progression, but does not
count towards their final classification. For the final year students, it is important that
assessment enables grades assigned to accurately reflect each student’s achievement.
The Arduino community actively encourages code reuse, but this must be properly
cited and documented so that a student’s individual contribution can be evaluated.

Another issue with physical computing is the need to engage with the work over a
period of time. Students often become adept at managing deadlines with a “just in
time” approach. The physical computing tasks require more time than students might
expect when they have less experience of this type of work. However, emphasising the
exploratory nature of the projects and providing the necessary time in the labs helps to
overcome this.

Developing kits, storing them and ensuring that damaged or missing items are
replaced is also time consuming. Breadboards are not ideal, as often circuits are
unreliable and temporary in nature. On the other hand, there is a loss of flexibility in
using self-contained kits. Introducing soldering makes it difficult to reuse components
and requires specialist lab provision, but is the better option for final year projects
where students may wish to keep the artefact and be able to demonstrate it without the
risk of failure.

Use of a Physical Computing approach has been beneficial in Computer Science
and IT in motivating students and helping them engage with the area. It does not offer
an easy option for the tutors, as they have to manage more equipment and ensure that
students get through initial thresholds such as a working circuit and code, help students
develop test strategies and negotiate the deliverables. For final year students, it is
important that tutors are continually aware of student progress and that the “rules” for
code and hardware reuse are clear.

Physical computing is not a panacea for teaching programming and it is important
that tasks relate to the area being taught. However, we have found that it does help
students with understanding some of the more abstract aspects of programming and
other computing concepts. It also plays a major role in student motivation; we often
find that students do not want to leave at the end of their lab sessions. Progression rates
have improved since the introduction of physical computing and many students have
engaged in external activities to show off their work. These include open days, National
Science Week events and robotics competitions as described above.

The Use of Physical Artefacts 123



References

1. Ahadi, A., Lister, R., Teague, D.: Falling behind early and staying behind when learning to
program. In: Proceedings of the 25th Psychology of Programming Conference, PPIG (2014)

2. Blikstein, P.: Gears of our childhood: constructionist toolkits, robotics, and physical
computing, past and future. In: Proceedings of the 12th International Conference on
Interaction Design and Children, pp. 173–182. ACM (2013)

3. Buechley, L., Eisenberg, M., Catchen, J., Crockett, A.: The LilyPad Arduino: using
computational textiles to investigate engagement, aesthetics, and diversity in computer
science education. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 423–432. ACM (2008)

4. Cambron, M.E.: Using the Ardunio in freshmen design. In: Sixth Annual (FYEE) First Year
Engineering Experience Conference on Enhancing the First Year of Engineering Education
College Station, TX, 7–8 August 2014

5. Herger, L.M., Bodarky, M.: Engaging students with open source technologies and Arduino.
In: 2015 IEEE Integrated STEM Education Conference (ISEC), pp. 27–32. IEEE (2015)

6. Kato, Y.: Splish: a visual programming environment for Arduino to accelerate physical
computing experiences, pp. 3–10. IEEE (2010). doi:10.1109/C5.2010.20

7. Okita, S.Y.: The relative merits of transparency: investigating situations that support the use
of robotics in developing student learning adaptability across virtual and physical computing
platforms: relative merits of transparency in learning adaptability. Br. J. Educ. Technol. 45,
844–862 (2014). doi:10.1111/bjet.12101

8. Robins, A.: Learning edge momentum: a new account of outcomes in CS1. Comput. Sci.
Educ. 20, 37–71 (2010). doi:10.1080/08993401003612167

9. Rubio, M.A., Romero-Zaliz, R., Mañoso, C., de Madrid, A.P.: Enhancing an introductory
programming course with physical computing modules. In: 2014 IEEE Frontiers in
Education Conference (FIE), pp. 1–8. IEEE (2014)

10. Boender, J., Currie, E., Loomes, M., Primiero, G., Raimondi, F.: Teaching functional
patterns through robotic applications. In: Proceedings TFPIE 2015: The Fourth International
Workshop on Trends in Functional Programming in Education (2015)

11. Racket Asip Client Library. https://github.com/fraimondi/racket-asip
12. The MIddlesex Robotic plaTfOrm (MIRTO). https://github.com/fraimondi/myrtle
13. Creative Robotics: HUB-ee, About-HUBee-Wheels. http://www.creative-robotics.com/
14. Clarkson, R.: A Self Contained Arduino Toolbox, Middlesex University Undergraduate

Project submitted, 24 April 2014

124 E. Currie and C. James-Reynolds

http://dx.doi.org/10.1109/C5.2010.20
http://dx.doi.org/10.1111/bjet.12101
http://dx.doi.org/10.1080/08993401003612167
https://github.com/fraimondi/racket-asip
https://github.com/fraimondi/myrtle
http://www.creative-robotics.com/

	The Use of Physical Artefacts in Undergraduate Computer Science Teaching
	Abstract
	1 Introduction
	2 Related Work
	3 Context
	4 Arduino Microcontrollers
	5 Robots
	6 Logic Circuits
	7 Discussion and Conclusions
	References


