
GARMDROID: IoT Potential Security Threats
Analysis Through the Inference of Android

Applications Hardware Features Requirements

Abraham Rodŕıguez-Mota1, Ponciano Jorge Escamilla-Ambrosio2(B),
Jassim Happa3, and Eleazar Aguirre-Anaya2

1 Instituto Politécnico Nacional, Escuela Superior de Ingenieŕıa Mecánica y Eléctrica,
Unidad Zacatenco, Av. IPN S/N, 07738 México D.F., Mexico

armesimez@gmail.com
2 Instituto Politécnico Nacional, Centro de Investigación en Computación,

México D.F., Mexico
pescamilla@cic.ipn.mx

3 Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
http://www.esimez.ipn.mx/

Abstract. Applications and services based on the Internet of Things
(IoT) are increasingly vulnerable to disruption from attack or informa-
tion theft. Developers and researchers attempt to prevent the growth of
such disruption models, mitigate and limit their impact. Meeting these
challenges requires understanding the characteristics of things and the
technologies that empower the IoT since traditional protection mecha-
nisms are not enough. Moreover, as the growth in mobile device market
is pushing the deployment of the IoT, tools and mechanisms to evaluate,
analyze and detect security threats in these devices are strongly required.
In this context, this paper presents a web tool, named GARMDROID,
aimed to help IoT software developers and integrators to evaluate IoT
security threats based on the visualization of Android application hard-
ware requests. This procedure is based on the static analysis of permis-
sions requested by Android applications.

Keywords: Internet of Things · Android · Security threats

1 Introduction

The Internet of Things (IoT) promises to extend “anywhere, anyhow, any-
time” computing to “anything, anyone any service”. Each person and thing
has a locatable, addressable, and readable counterpart on the Internet. Such
highly-distributed nature and use of fragile technologies, such as limited-function
embedded devices in public areas, create weak links that malicious entities can
exploit [1]. Consequently, a number of different factors may arise and lead to
different types of security exposures, among them consistently defects, bugs and

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

E. Sucar et al. (Eds.): AFI 2016, LNICST 179, pp. 63–74, 2017.

DOI: 10.1007/978-3-319-49622-1 8



64 A. Rodŕıguez-Mota et al.

logical flaws are causes of commonly exploited software vulnerabilities [2]. There-
fore, the challenge is to prevent the growth of such models or at least to mitigate
and limit their impact.

Traditional IoT protection mechanisms, such as lightweight cryptography,
secure protocols, and privacy assurance are not enough. In this sense, research
must be oriented to analyze current security protocols and mechanisms, and
decide whether such approaches are worth integrating into the IoT as is or if
adaptation or entirely new designs will better accomplish security goals. Since
attacks could involve various layers of the device infrastructure, they could
include applications running on smartphones or tables, cloud services (firmware
included), and network service stacks on WiFi modules (as well as the firmware
and application layer on the host processor) [1].

In IoT mobile applications, new vulnerabilities continue to emerge as IoT
becomes a more attractive target. In terms of the nature of mobile devices,
their vulnerability surface share attributes with traditional client/server and
Web applications. However the type of information that is trusted on mobile
devices creates some unique attack vectors as well. For example, privacy violation
weaknesses occurring on mobile devices can lead to the disclosure of location,
sensitive images, and data entered from the keyboard or displayed on the screen
and other personal information [2].

Taking into account that in recent years Android OS has become one of the
principal sharers in the global mobile devices market [3], our research has focused
on the analysis and detection of security threats in Android applications. This
paper presents a subset of functionalities of an Android malware hybrid analysis
and detection software system, currently under development. Although GAR-
MDROID has a bigger aim, oriented to integrate static and dynamic malware
analysis, since static analysis is usually the first approach to malware analysis, we
focus this discussion on the capabilities of GARMDROID to provide quick feed-
back to developers producing a visualization of app’s permissions and features
requirements which, as discussed later on, result very handy in the identifica-
tion of potential threats or bad designed software. This system has been named
GARMDROID as a result of the fusion of the words GARM and Android (in
Norse mythology, Garm is a dog described as a blood stained watchdog that
guards Hel’s gate [4]).

2 Android Overview

An Android device can have a wide variety of sensors. Android’s sensing capa-
bilities are derived from the available hardware on Android devices and from
creative use of it. A capability may use values directly from hardware that can
measure physical quantities or it may use hardware that the user typically inter-
acts with, such as the camera and microphone. A capability may even use a
combination of hardware and server-based processing, such as speech recogni-
tion. Whatever the source, the resulting data can inform an application (app)
about the device’s state and the environment in which it resides [5].



GARMDROID 65

In any app, acquiring sensor data requires similar code. Each kind of data
requires different boilerplate. In many cases, is not trivial to initialize the API
and acquire the data. Once an app can initialize and acquire sensor data, it
needs to utilize the APIs to collect the data while the app is running. Data can
be collected in different ways depending on how an app uses it. For example,
location tracking is a common use of location sensors, in this case some apps
need to persistently track location while an app performs other tasks. In the case
of speech recognition, such app needs to have other components besides actually
running the speech recognizer. An app also needs to allow the user to activate
speech and mediate turn taking between when the user can speak and when the
app is listening [5].

In this sense, a <uses-feature> element contained in an AndroidManifest.xml
file, declares a single software feature that is used by an application. The purpose
of declaring these elements is to inform any external entity of the set of hardware
and software features on which an application depends. The element offers a
required attribute that lets developers specify whether the application requires
and cannot function without the declared feature, or whether it prefers to have
the feature but can function without it. Because feature support can vary across
Android devices, the declaration of these elements serves an important role in
letting an application describe the device-variable features that it uses [6].

Declaring features is for informational purposes only. The Android system
itself does not check for matching features support on the device before installing
an application. However, other services (such as Google Play) or applications
may check the declarations in the application as part of handling or interacting
with the application. When a user searches or browses for applications using
the Google Play application, the service compares the features needed by each
application with the features available on the user’s device. If all of an applica-
tion’s required features are present on the device, Google Play allows the user
to see the application and potentially download it. If any required feature is not
supported by the device, Google Play filters the application so that it is not
visible to the user and not available for download [6].

An explicitly declared feature is one that an applications declares
in a <uses-feature> element. The feature declaration can include an
android:required=[“true”—“false”] attribute (if the code is being compiled
against function API level 5 or higher), which lets the developer specify whether
the application absolutely requires the feature and cannot function properly
without it, or whether the application prefers to use the feature if available, but
it is designed to run without it. In general, if an application is designed to run on
Android 1.6 and earlier versions, the android:required attribute is not available
in the API and Google Play assumes that any and all feature declarations are
required [6].

An implicit feature is one that an application requires in order to function
properly, but which is not declared in the manifest file. Strictly speaking, every
application should always declare all features that it uses or requires, so the
absence of a declaration for a feature used by an application should be considered



66 A. Rodŕıguez-Mota et al.

an error. However, as a safeguard for users and developers, Google Play looks for
implicit features in each application and sets up filters for those features, just as it
would do for an explicitly declared feature. Google Play attempts to discover an
application’s implied feature requirements by examining other elements declared
in the manifest file, specifically, <uses-permission> elements [6].

If an application requests hardware-related permissions, Google Play assumes
that the application uses the underlying hardware features and therefore requires
those features, even though there might be no corresponding features declara-
tions. For such permissions, Google Play adds the underlying hardware features
to the metadata that it stores for the application and sets up filters for them [6].

3 Android Threats

The way people experience and interact with devices is changing. More and more
gadgets and devices are being added to the Internet of Things ecosystem every-
day. The interconnection between these gadgets and devices has the potential to
create remarkable, new user experiences [7]. However, novel technology can lead
to exposures, as the implications of new technologies can sometimes be difficult
to guess and avenues of attack can be unexpected until observed in practice [2].

Mobile application vulnerabilities continue to evolve as Android devices
become attractive targets. Mobile devices contain sensors and actuators of types
not historically common in personal computers or servers, which collect and
transmit private information about the user of the device. The list of sensors that
can reveal sensitive information include cameras, microphones, accelerometers,
gravity sensors, rotational vector sensors, gyroscopes, magnetometer, Global
Positioning System (GPS) sensors, Near-Field Communication (NFC), light sen-
sors, M7 tracking chips, barometers, thermometers, pedometers, heart-rate mon-
itors, and fingerprint sensors [2].

Privacy-violation weaknesses occurring on mobile devices can lead to the
disclosure of location, sensitive images, data entered from the keyboard or dis-
played on the screen and other personal information. While smartphones can be
used for viewing, manipulating, and storing local data, these devices also allow
users to interact with a world of interconnected resources from the convenience
of their hands. Through communication protocols, both sensitive and benign
data is shared between remote services in different devices [2]. In the context of
Android, privacy violation weaknesses can be related to a set of security risks,
Fig. 1 presents 10 of the biggest Android security risks.

Additionally, it must also be considered that insecure deployment combines
various configurations, settings, and states that result in unnecessary weaknesses.
For mobile applications this may include not using technologies of content pro-
tection such as PlayReady DRM, not checking to determine if the application
is running on a compromised device, or exhibiting properties that may indicate
malicious intent [2].



GARMDROID 67

Fig. 1. Android security risks, based on [8].

3.1 Android Malware Analysis

Malware analysis is a process in which the malware is taken apart for study-
ing its code structure, operation and functionality. It is conducted with specific
objectives which include: to understand the vulnerability that was exploited, to
study the severity of the attack and counteracting measures, to penetrate into
the compromised data in order to investigate its origin and to obtain information
about other compromised machines [9]

Detection techniques for Android malware use statically extracted data from
the manifest file or from Android API function calls, as well as dynamically
obtained information from network traffic and system call tracing [11]. Most of
current systems used to detect malicious code are largely based on syntactic
signatures and employ static analysis techniques. Static analysis techniques can
be evaded by malware applications using techniques such as polymorphism and
metamorphism, since syntactic signatures are ignorant of semantics of instruc-
tions [12].

4 GARMDROID

GARMDROID is based on the capabilities provided by the Android SDK tool
set, specifically the Android Asset Packaging Tool (AAPT) which is contained as
part of the platform tools set. In this implementation clients can upload malware
samples and request analysis via a Web interface. Figure 2a presents a general
representation of the Web system.

During analysis, once an android application file (.apk) has been uploaded
by a user, GARMDROID uses a set of bash and python scripts to command
AAPT to extract the contents of the app’s AndroidManifest.xml file and to
filter out the important strings. In this case, as shown in Fig. 2b, the system’s
software stack includes Java at the bottom layer as it is required to run the
AAPT. Python and Bash programming is on top of the AAPT layer since a set
of python and bash scripts are used to filter out permissions and feature-request



68 A. Rodŕıguez-Mota et al.

strings from the AAPT output. Further processing, based on the characteristics
of implicit features and explicit features declarations provided by Android, helps
GARMDROID to deduce the set of requested hardware features related to the
app’s specific set of permissions requests. This association between permissions
and requests with hardware features is performed also by a python script. Finally,
PHP scripts are employed to obtain the web visual representation of the data via
HTML and SVG elements. GARMDROID is available at www.garmdroid.org.

Fig. 2. System representation, (a) Web system and (b) software stack

Figure 3 shows the main page of the system from where users can upload files
and see the results after file processing. Once the application file is processed
the tool displays the name, mime type, size and md5 hash value of the file.
Additionally, permissions and features are identified and displayed. In the case
of permissions, Fig. 4a, it has been selected to visualize the requested permis-
sions as a matrix of dots where permissions requested by the application under
analysis are indicated as red dots. Features have been represented as icons in
order to facilitate visualization: Audio, Bluetooth, Camera, Infrared, Location,
Microphone, NFC, Sensors (Accelerometer, Barometer, Compass, Gyroscope,
Light, Proximity, Step Counter, Step Detector), Screen, Telephony, Television,
Touchscreen, USB and WiFi, see Fig. 4b.

5 Results

In this section a set of results obtained after processing a group of Android
applications using GARMDROID is presented. Our results take form of five
different case scenarios (apps). In each case GARMDROID presents an inference
of the set of hardware features requested by the app under analysis, plus the set

http://www.garmdroid.org/


GARMDROID 69

Fig. 3. GARMDROID welcome page

Fig. 4. (a) Permissions tab, additionally to the dot matrix representation, in which
hovering over a circle provides the full permission name, a textbox element at the
bottom of the tab also displays the identified permissions; (b) Features tab, represent-
ing hardware features as icons which change its background color to red if they are
requested by the file under analysis. (Color figure online)

of permissions requests. These cases serve a two-fold purpose: to demonstrate
GARMDROID operation and direct the discussion towards observations which
can lead to identify security threats in IoT-oriented Android applications. In
brief, the five cases presented and conclusions drawn can be summarize as follow:

1. Hardware-Test app: granting high volume of permissions and access to hard-
ware features may increase security risks.

2. Lighting app: inconsistency between app’s functionality and hardware fea-
tures requests must raise security concerns.



70 A. Rodŕıguez-Mota et al.

3. IR remote control apps: excessive hardware feature requests may imply secu-
rity risks.

4. Gyroscope app: little or no hardware features requests may signify a security
problem.

5. Hardware-Test app: problems inferring hardware features requests may imply
security risk or app design problems.

In this description it has to be assumed that applications have been ana-
lyzed using VirusTotal [13], and in all cases where identified as benign, unless
otherwise stated. Moreover, detailed information such as application name and
hash values have been omitted on purpose to avoid misleading users from using
such applications, since the provided results are only demonstrative and fur-
ther analysis could be required to properly identify some of the applications as
malware or bad software design samples.

Firstly, a Hardware-Test application was analyzed, see Fig. 5. As it can be
observed the analysis shows that this application requests access to Accelerom-
eter, Audio, Barometer, Bluetooth, Camera, Compass, Gyroscope, Light, Loca-
tion, Microphone, NFC, Proximity, Screen, Telephony, Touchscreen, USB and
WiFi. In this case, results mainly demonstrate GARMDROID’s capability to
infer requested hardware features, but it is also interesting to observe that even
though it is not identified as being malicious, it is easy to visualize that there
is a high risk in allowing this kind of access to any application, due to the big
number of hardware elements that are requested.

Fig. 5. Features requests for a selected Hardware-Test application.

Secondly, Fig. 6 shows the features requested by an allegedly lighting app.
The results may raise suspicion since the application requests not only access
to the camera (assuming that the lighting functionality is provided by using the
camera flash functionality) but to Location and WiFi features as well.

Thirdly, a couple of Infrared Remote Control apps were analyzed, see Fig. 7.
In this case we observed that there is a big difference between the set of fea-
tures requested which may be a reason to promote a further analysis over the
application requesting more than the IR feature (Bluetooth and WiFi).



GARMDROID 71

Fig. 6. Features requested by a lighting app.

Fig. 7. Comparison between features-requests by two different Remote-Control
Infrared apps.

The following case, see Fig. 8 presents an application advertised as capable to
provide gyroscope data. Interestingly, none permission was requested and only
the touch screen request is made. At this stage there was no evidence to define
whether these characteristics are related to a security threat or a poor design,
but provides a strong reason to think that further analysis is required.

As our final case, a Hardware-Test app is presented which requested features
but not following the Android specification (Upper case text was used where
the specification indicates lower case). This case was detected as a result of a
further analysis of the app after observing that no features were indicated on
the GAMDROID features tab. Although more information would be required
to determine whether the application represents a threat or not, there is an
indication of a bad software design. Figure 9 illustrates these results.

Finally, after analyzing four IoT oriented apps samples (home automation
type) results were compared with those obtained from analyzing 369 Fake-
Installer Android malware samples, see Fig. 10. In this respect, although the
selected IoT samples set is small, after comparing the results it can be observed
that a request for telephony hardware is not a common feature for home



72 A. Rodŕıguez-Mota et al.

Fig. 8. Gyroscope application which does not request any permission but request the
touch screen feature only.

Fig. 9. Hardware-Test app with anomalous feature-request declarations.

Fig. 10. Features requested by IoT Android Samples (home automation type) and
applications identified as FakeInstaller malware



GARMDROID 73

automation apps. From the point of view of developers it can be assumed as
a good indication that further analysis is required.

6 Conclusions

Despite the fact that openness has been an important factor in Android fast
positioning into the mobile market, it is clear that it implies certain security
challenges. In the case of the Internet of Things (IoT) the growing adoption of
devices and solutions that incorporate Android has brought those challenges into
the realm of the IoT. Therefore, in order to guarantee high security levels IoT
developers need to get more involved in the analysis and detection of security
threats.

Since IoT development requires a vast and detailed knowledge of diverse
technological aspects it is always difficult to count with personnel experienced
in those many areas. Consequently, the use and development of new tools and
analysis techniques that facilitate or simplify in some extent security analysis
are becoming important research and development areas. This paper presented
a proof-of-concept that demonstrates visual representations of some application’s
static features that could help developers to direct security analysis.

Although only a part of the system under development is described in this
paper, it is considered that the features provided currently represent a use-
ful asset for software development in the IoT area when compared with other
options currently in the marked. As an example, the identification of “suscpi-
cious” hardware features requests discussed in this paper only required from a
user a quick review of the visual information, whether a similar analysis using
raw analysis data, e.g. from VirusTotal, would require more effort reading all
permissions identified and selecting those that could let to infer the hardware
features. It must be considered that this task can be performed easily for few
samples but it becomes error prone as the number of permissions per app and
apps under analysis increases.

In terms of the results presented in this work, it can be concluded that
visualization of features requested by an Android app may provide a simple and
quick overview of the app’s real intentions. This, combined with the knowledge
of the permissions requested by the application, provides a good reference for
developers that are faced with the decision of whether or not to reuse code,
install a new application, grant permissions, define features requests, among
other tasks. Further analysis and development is planed in this research in order
to integrate these results with others from more elaborated techniques, such as
machine learning, in order to provide a more detailed and holistic analysis. Some
work in this direction is in progress at our research institution.

Acknowledgments. This material is based on work supported by the Mexican
National Council of Science and Technology (CONACYT) under grant 216747. Also
the authors acknowledge support from IPN under grant SIP-20161697.



74 A. Rodŕıguez-Mota et al.

References

1. Roman, R., Najera, P., Lopez, J.: Securing the Internet of Things. IEEE Computer
44(9), 51–58 (2011)

2. Childs, D., Gilliland, A., Gorenc, B., Goudey, H., Gunn, A., Hoole, A., Lancaster,
J., Muthurajan, S., Wook, Oh, J., Tsipenyuk O’Neil, Y., Park, J., Petrovsky, O.,
Sechman, J., Shah, N., Sotack, T., Svajcer, V.: The HPE Cyber Risk Report 2015.
HP (2015)

3. Gartner: Gartner Says Worldwide Smartphone Sales Recorded Slowest Growth
Rate Since 2013, 6 January 2016. http://www.gartner.com/newsroom/id/3115517

4. Wikipedia: Garmr. 15 November 2015. https://en.wikipedia.org/wiki/Garmr
5. Milette, G., Stroud, A.: Professional Android Sensor Programming. Wiley,

Indianapolis (2012)
6. Android developers: uses-features, 10 December 2015. http://developer.android.

com/intl/es/guide/topics/manifest/uses-feature-element.html
7. Embarcadero: Internet of Things Solutions, 2 January 2016. https://www.

embarcadero.com/solutions/internet-of-things
8. Phifer, L.: Top 10 Android Security Risks, 14 May 2015. http://www.

esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.
htm

9. Kendall, K.: Practical Malware Analysis, 07 May 2015. https://www.blackhat.
com/presentations/bh-dc-07/Kendall McMillan/Paper/bh-dc-07-Kendall
McMillan-WP.pdf

10. Childs, D., Gilliland, A., Gorenc, B., Goudey, H., Gunn, A., Hoole, A.,
Lancaster, J.: Cyber Risk Report 2015 Hewlett-Packard. Technical report, HP
Security Research (2015)

11. Afonso, V., de Amorim, M., Grgio, A.R.A., Junquera, G., de Geus, P.: Identify-
ing Android malware using dynamically obtained features. J. Comput. Virology
Hacking Tech. 11, 9–17 (2015)

12. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer Security Applications Conference 2007, ACSAC 2007, pp. 421–430
(2007)

13. VirusTotal, 05 December 2015. https://www.virustotal.com/es-mx/

http://www.gartner.com/newsroom/id/3115517
https://en.wikipedia.org/wiki/Garmr
http://developer.android.com/intl/es/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/intl/es/guide/topics/manifest/uses-feature-element.html
https://www.embarcadero.com/solutions/internet-of-things
https://www.embarcadero.com/solutions/internet-of-things
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.virustotal.com/es-mx/

	GARMDROID: IoT Potential Security Threats Analysis Through the Inference of Android Applications Hardware Features Requirements
	1 Introduction
	2 Android Overview
	3 Android Threats
	3.1 Android Malware Analysis

	4 GARMDROID
	5 Results
	6 Conclusions
	References


