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Abstract. Energy management is a key topic for today’s society, and a
crucial challenge is to shift from a production system based on fossil fuel
to sustainable energy. A key ingredients for this important step is the use
of a highly automated power delivery network, where intelligent devices
can communicate and collaborate to optimize energy management.

This paper investigates a specific model for smart power grids ini-
tially proposed by Zdeborov and colleagues [12] where back up power
lines connect a subset of loads to generators so to meet the demand of
the whole network. Specifically, we extend such model to minimize CO2

emissions related to energy production.
In more detail, we propose a formalization for this problem based on

the Distributed Constraint Optimization Problem (DCOP) framework
and a solution approach based on the min-sum algorithm. We empirically
evaluate our approach on a set of benchmarking power grid instances
comparing our proposed solution to simulated annealing. Our results,
shows that min-sum favorably compares with simulated annealing and
it represents a promising solution method for this model.

Keywords: Smart grid · Decentralized constraint optimization · Factor
graphs

1 Introduction

Energy management is a key topic for today’s society, and a crucial challenge
that governments and societies are facing is to shift from a production system
based on fossil fuel to sustainable energy. A key point for sustainable energy is
the use of renewable energy sources such as solar, wind and tidal power, bio-
mass, geothermal energy etc. Many of the renewable energy sources (e.g., solar
power, wind power and biomass) can be exploited in a decentralized fashion,
dramatically changing the current centralised production system. More specif-
ically, decentralized energy is energy generated near the point of use, and is
typically produced by small generating plants connected to a local network dis-
tribution rather than to the high-voltage transmission system required by the
centralised energy production scheme. Technologies for producing decentralized
energy are already mature enough for large scale deployment, and in many coun-
tries, such as Finland, the Netherlands and Denmark, a significant percentage
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of the national electricity production is provided through decentralized energy
(respectively 35%, 40% and 50%).

In this context, the vision of an intelligent electricity delivery network, com-
monly called smart grid, has been advocated as a key element to achieve decen-
tralized sustainable energy provisioning. The smart grid is a highly automated
distribution network that incorporates many different devices, such as smart
meters and smart generators. A key element to realize the long term vision of
the smart grid is the development of proper ICT infrastructures that enable
data transfer and interoperability among all the core components of the smart
grid. In this perspective, the internet of things (IoT) provides crucial enabling
technologies for the smart grid by proposing a clear set of standard and effec-
tive communication protocols that foster the interoperability between different
devices [5].

The long term goal of the smart grid is to exploit such ICT infrastructure
to optimize the energy management and distribution process, hence minimising
carbon emissions and reducing costs to generate electricity. In this perspective
a crucial topic is to avoid the overloads of power generation units that may be
caused by the fluctuation in demand and by the intermittent generation typical
of renewable technologies (e.g., wind).

Within this framework, we will study a specific model for power grids ini-
tially proposed by Zdeborov and colleagues [12] where back up power lines (called
ancillary lines) connect a subset of loads to several generators. Such loads can
then choose which generator to use to meet their demand. In the model pro-
posed in [12] authors focus on a satisfaction problem, i.e., the solution is a
configuration of loads (i.e., a mapping from load to generators) where no gen-
erator in the grid is overloaded (i.e., the demand of the connected load does
not exceed the generator maximum production). Figure 1 shows an exemplar
situation where 6 loads (L1,1, · · · , L2,3) are connected to 2 generators (G1, G2).
Dashed arrows represents ancillary lines that could be used by a subset of the
loads (i.e., {L1,1, L1,2, L2,1, L2,3}).

Fig. 1. Diagram depicting a power grid with 2 generators, 6 loads and 4 ancillary lines.

Here, we extend such model by considering that the CO2 emissions of the
generators depend on their production level. Thus, the problem becomes a con-
strained optimization problem, where the goal is to find the configuration of loads
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that minimizes the total CO2 emissions in the grid ensuring that no generator
is overloaded.

Following the distributed energy management paradigm that underpins the
smart grid vision, we propose a decentralized solution approach for this prob-
lem. Specifically, we represent the problem discussed above as a Distributed
Constraint Optimization Problem (DCOP) which is a widely used framework
for decentralized decision making [9]. The DCOP literature offers a wealth of
solution approaches ranging from exact algorithms [9,10] to heuristic techniques
[3,7,13]. While exact algorithms are guaranteed to return the optimal solution,
they all suffer from an exponential element in the computation (and message
size/number) that hinders their applicability for the large scale scenarios we con-
sider here (i.e., thousands of variables). In contrast, while heuristic approaches
can not guarantee the quality of the retrieved solutions, they have been success-
fully used in several scenarios [2,4]. Hence, here we employ a standard heuristic
approach (i.e., the max-sum algorithm [3]) that has been shown to provide high
quality solutions in various application domains. In more detail, following pre-
vious work [3,11] we represent the DCOP problem by using factor graphs [6]
and we run a close variation of the max-sum algorithm, i.e., the min-sum as we
address a minimization problem.

We empirically evaluate our approach on a set of benchmarking power grid
problems, created with the procedure proposed in [12]. Results obtained over
a wide range of problem instance have been analyzed by considering different
measures such the final cost (i.e., CO2 emissions), steps required to converge to a
solution and total run time. Our proposed approach has been compared to sim-
ulated annealing, a well known centralized method for optimization. Overall the
empirical analysis shows that the min-sum algorithm can solve large instances
(i.e., up to 20000 generators) in seconds and that it provides a significantly
smaller cost when compared to simulated annealing, hence being a promising
approach for our model.

2 Background

In this section we discuss necessary background detailing the DCOP formalism,
factor graphs and the max-sum approach.

2.1 Distributed Constraint Optimization Problems

Distributed constraint optimization problems (DCOP) are a generalization of
COP for distributed frameworks. A DCOP is a tuple 〈A,X ,D,R〉, where
A = {a1, . . . , as} is a set of agents and X = {x1, . . . , xn} is a set of variables,
each variable xi is owned by exactly one agent ai, but an agent can potentially
own more than one variable. The agent ai is responsible for assigning values
to the variables it owns. D = {D1, · · · ,Dn} is a set of discrete and finite vari-
able domains, and each variable xi can take values in the domain Di. Then,
R = {r1, . . . , rm} is a set of cost functions that describe the constraints among
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variables. Each cost function ri : Di1 × · · · × Diki
→ � ∪ {∞} depends on a

set of variables xi ⊆ X , where ki = |xi| is the arity of the function and ∞ is
used to represent hard constraints. Each cost function assigns a real value to
each possible valid assignment of the variables it depends on and ∞ to non valid
assignments.

For a minimization problem, the goal is then to find a variable assignment
that minimizes the sum of cost functions:

arg max
x

∑

i

ri(xi) (1)

2.2 Factor Graphs and Min-Sum

A Factor Graph is a bipartite graph that encodes a factored function, e.g. func-
tions that can be expressed as a sum of components, such as the function reported
in Eq. 1. A factor graph has a variable node for each variable xi, a factor node
Fj for each local function rj , and an edge connecting variable node xi to factor
node rj if and only if xi is an argument of rj .

Factor graphs represents a very convenient computational framework for sev-
eral optimization techniques such as max-sum, max-prod, and the min-sum algo-
rithm that we use in this work.

In more detail, the min-sum algorithm belongs to the Generalized Distribu-
tive Law (GDL) framework [1], a family of techniques frequently used to solve
probabilistic graphical models (e.g. to find the maximum a posteriori assignment
in Markov random fields or compute the posterior probabilities) [2]. If applied
to constraint networks in tree form, min-sum provides the optimal solution, but
when applied to more general networks (i.e. networks which contain loops) opti-
mality (and convergence) can be no longer ensured. However, empirical evidence
shows that GDL-based algorithms are able to find solution very close to the
optimal in several problems.

Min-sum operates directly on a factor graph representation of the problem
iteratively exchanging messages between variable nodes and function nodes. The
key idea in the algorithm is that new messages are computed and passed between
the nodes in the graph until a stop condition is verified. There can be many
convergence criteria (e.g. messages convergence, solution convergence, etc.). In
our approach we focused on the messages convergence, as our tests revealed this
criterion to be the best choice for our problem scenario. Moreover, to deal with
not satisfiable instances we consider a maximum number of message computation
steps, if this maximum number of steps is reached the algorithm states that it
could not find a valid solution.

3 Problem Formulation

In this section we first detail the model for controlling the power distribution
with ancillary lines proposed in [12], then we present our proposed extension
and our factor graph formalization of such problem.
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3.1 Model for Power Distribution with Ancillary Lines

The model for power distribution proposed in [12] is composed by two types of
elements: a set of M generators and a set of loads. A generator Gi has a fixed
maximum energy production value and without loss of generality, we normalize
this to 1, thus no more than one unity of energy can be absorbed by all the loads
connected to Gi.

A load is a component of the grid that is not able to produce energy for itself
or for other nodes in the network. The power consumption rate varies across the
loads, but for each load it is a constant that can not be controlled. This value
is drawn from a uniform probability distribution with support on the interval
(0, 1). The center of the distribution is set to x̄ (that represents the mean value
and x is the consumption rate). The width of the distribution is Δ. Thus, given
a load lj , its power consumption rate is a value drawn uniformly in the set
[x̄ − Δ

2 , x̄ + Δ
2 ]. This power can be absorbed by only one generator at time, i.e.

if a load is connected to several generators, only one link can be active. Each
generator is connected to D distinct loads, thus the total number of loads is
(M · D).

A power grid is then a graph forest composed by M trees. Among this forest,
R ancillary lines for each generators are added. In more detail, (R · M) new
links are created to interconnect the grid. These links are added in two simple
steps: (1) R loads are chosen from each generator; (2) for each load chosen in
the first step, connect it to another generator in such a way that, at the end of
the process, every generator is connected to (D + R) loads.

The final result is a bipartite graph with the following properties: (i) M nodes
corresponding to the generator set; (ii) M · D nodes corresponding to the load
set; (iii) M ·(D−R) loads are connected to only one generator; (iv) (M ·R) loads
are connected to two generators; (v) every generator is connected to (D + R)
loads; (vi) no load in the net is connected to more than 2 generators. Hence the
free parameters that define an instance of the power grid model are M, D and R.

In Fig. 1 shows an exemplar instance of a power grid when M = 2, D = 3
and R = 2. Loads L1,3 and L2,2 are single connected, so they can use only
the generator they are connected to (respectively generator G1 and generator
G2). The remaining loads (L1,1,L1,2,L2,1 and L2,3) are connected to both the
generators, so they can use energy from G1 or from G2 (never concurrently).

3.2 Formalization of CO2 emissions in the power grid

As mentioned before, Zdeborov and colleagues in [12] focus on a satisfaction
problem, aiming to find a mapping from loads to generators, where no generator
in the grid is overloaded.

Here, we extended their model considering the CO2 emissions for each gen-
erator and aiming to minimize the total emission for the grid.

Specifically, following [8], the CO2 emission function is proportional to the
energy produced by the generators. In more detail, the CO2 emission function
is: CO2 = mult · energy where energy is the ratio of energy that the generator
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must produce with respect to its maximum energy production value (which as
mentioned above is set to 1); mult represent a feature of the generator, that
expresses the unit of CO2 emitted by the generator for each unit of energy
produced. In our experiments we choose mult randomly in a range [1, 5].

3.3 From Power Grid to Factor Graph

Our factor graph model of a power grid with ancillary lines consider a variable
node for each load Li and a factor node for each generator Gj . In more detail,
the variable node xi, that corresponds to load Li, has a domain that contains a
value for each possible generator Gj which the load Li can connect to. Moreover,
the scope for the factor node Fj , corresponding to generator Gj , is the set of
variable nodes {xi, . . . , xk} that correspond to loads that can get power from
Gj .

For example, consider the power grid in Fig. 1. The corresponding factor
graph is shown in Fig. 2 (left), while the correspondence between nodes and
generators/loads is summarized in Fig. 2 (right).

Fig. 2. Left: example of factor graph for the power grid in Fig. 1. Right: correspondence
between nodes and generators

Consider the dotted edge from x5 to F1 and from x6 to F2. In a näıve model,
x5 would be connected to F1 and x6 to F2 but, since their domains contain
only one value, they can be safely removed from F1 and F2. In practice, variable
with a single value can be considered meaningless because its value is already
known. Specifically, x5 is removed from F1, which is modified to consider the
consumption of the load represented in x5 for any possible value of its other
arguments. Since x5 can be connected only to F1, it means that for every possible
value of x1, x2, x3 and x4 the total energy that generator G1 can produce is
(1 − energy required by L1,3).

4 Results and Discussion

In this section we first detail our empirical methodology and then discuss
obtained results.
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4.1 Empirical Methodology

Our goal is to empirically evaluate the proposed min-sum approach in power
grid instances that have the same characteristics as the benchmarking test suite
proposed in [12]. In that work authors use two different algorithms (i.e., walkgrid
and belief propagation), but since here we extend their model considering an
optimization problem (and not satisfaction) we do not compare min-sum to
such algorithms but instead use a simulated annealing procedure. Simulated
annealing is a well known, powerful approach for finding a global minimum of a
cost function.

To create the power grid instances, we follow the procedure described
in [12], fixing D = 3 R = 2 and Δ = 0.2. Then we vary M ∈
{200, 1000, 2000, 10000, 20000} and x̄ between 0.29 and 0.3 with a step of 0.01.

With this parametrization, the factor graph obtained from a power grid with
M generators, has M function nodes and (M ·R) variable nodes (as described in
Sect. 3.3, only loads connected to two generators are mapped to variable nodes).
Hence, at each iteration of the min-sum algorithm (2R · M) messages from vari-
ables to functions and (2R · M) messages from functions to nodes are sent.

We create 100 different power grid instances for all possible values of input
parameters. For all instances the consumption rate x of each load is drawn from
the uniform probability distribution centered in x̄ and with width set to Δ.

Our metrics to evaluate the solution techniques are the final cost (the lower
the better), the total run time and the amount of iterations required to get a
response. The halting condition for min-sum is either message convergence or a
maximum number of iterations (set to 300).

Fig. 3. Left: cost values varying x̄ and with M = 20000, Rigth: success rate varying
both x̄ and M
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4.2 Results

Figure 3 (left) reports the final cost value when M = 20000 (i.e., the biggest value
for M) varying the value of x̄. The graph reports the obtained cost value for all
repetitions that result in a valid configuration (i.e., no generator is overloaded
given the min-sum mapping from loads to generator). The graph shows that
when the values of x̄ increases the number of valid solution decreases (i.e., when
x̄ = 0.299 the number of points in the graph is significantly less than the number
of points when x̄ = 0.29). Moreover, there are no points when x̄ = 0.3, thus there
are no solution for the 100 power grid problems created for the maximum value
available for x̄. Notice that, there is no guarantee that if min-sum is not able to
find a solution, then the problem is not-satisfiable. However, bigger values of x̄
result in power grid instances where loads generally require more energy. Hence
it is more likely that there is no valid configuration for the power grid, this is
confirmed by results obtained with simulated annealing (not reported here in
the interest of space).

Figure 3 (right) reports the success rates varying both M and x̄, where
the success rate is number of valid solutions/total number of instances. As men-
tioned before, the success rate heavily depends on x̄, however, there is also a
dependency with respect to M when large values of x̄ are used (approximately
x̄ >= 0.28). This happens because bigger values of M result in bigger power
grids, where the probability of having at least on generator overloaded increases.
Thus, when x̄ = 0.3 the power grid is not-satisfiable most likely when M = 20000
then when M = 200. Moreover, M has a strong influence on the absolute value
of the final cost (i.e., CO2 emissions) because, when all other parameters are
fixed, bigger networks will generate more energy and hence create more CO2

emissions. Hence to analyse the quality of the solution returned by min-sum
with for we report in Fig. 4 the final cost value normalized with respect to the
M parameter (here, and in the following graphs, the error bars represent the
confidence interval of a t-test with 95% accuracy). This graph exhibits a similar
trend w.r.t the one in Fig. 3. Specifically, the graph shows that while the quality
of the optimal solution is strongly correlated with the growth of x̄, the min-sum
algorithm is able to provide solutions of good quality for large scale systems.

Figure 5 (left) reports the run time (in milliseconds) for min-sum to finish
(either finding a solution or stating that the problem is not-satisfiable). As shown
in the graph, x̄ influences the time used. This happens because for smaller values
of x̄ it is usually easier to find a solution, since there is a smaller probability
to have generators overloaded. Moreover, when the problem is harder (i.e., the
loads mean consumption is higher), min-sum require more iterations to converge,
hence the growth of time shown in the graph. When M = 10000 and M = 20000,
from x̄ = 0.298 time peaks to its maximum value: this is the case for not-
satisfiable problems, when the min-sum stops by reaching the maximum number
of iterations.

The graph also shows a linear dependency between M and time: this can
be easily observed in the cases when M = 10000 and M = 20000, where when
x̄ = 0.3 the case M = 20000 requires approximately double the time required
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Fig. 4. Final cost value (normalized with respect to M).

by the case M = 10000. This can be explained by considering that the number
of messages sent for each iteration by the min-sum algorithm is 4R · M .

Fig. 5. Left: mean values for run time varying both x̄ and M , Right: steps required.

The steps required by the min-sum algorithm are shown in Fig. 5 (right).
The graph shows a similar trend between steps required when M changes. For
example consider M = 200 and M = 20000 when x̄ = 0.296: M grows 100 times,
and the steps required change from 190 to 250. The growth is sub-linear. There
is a stronger dependency between step required and x̄: thus, when the problem
is harder a bigger number of iterations is necessary to find a solution.
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We now turn to the comparison of min-sum with simulated annealing. Since
simulated annealing is not able to handle hard-constrained problem, every hard-
constraint is transformed in a soft-constraint by changing +∞ values to a pre-
defined upper bound value. The algorithm implements a mechanism of random
restart: for 20 times, the execution of simulated annealing is repeated, and the
final value is the lowest (i.e., the best) obtained through the 20 repetitions.

Overall, simulated annealing requires a significant amount of time to solve
these power grid problems. In fact, it takes several days to analyze all the 1100
instances when M = 200 (that is the smallest value for M). The main issue is
that simulated annealing changes the value of one variable at each iteration: thus,
when M = 200 and the variable nodes in the factor graph are 600, simulated
annealing needs several steps to change the value of a big part of the variables.
We tuned the algorithm to reduce computation time and we found that for
M = 200 the best value for the number of iterations is 100000 with an initial
temperature equals to 1500. These significantly reduced computation time (to
few hours), however run time is still prohibitive for instances that have a larger
M , hence in the following experiments we fixed M = 200.

Fig. 6. Left: run-time mean value (in milliseconds) M = 200, Right: comparison
between Simulated Annealing and min-sum M = 200

Figure 6 (left) confirms a significant difference in run time in favour of min-
sum. Moreover, Fig. 6 (right) reports a comparison between the mean values of
the cost obtained by min-sum and Simulated Annealing. The graph shows that
min-sum is generally comparable to simulated annealing and sometimes gives
better results.

Figure 7 provides a more refined comparison between the performance of
min-sum and simulated annealing. This chart (best viewed in colors) reports a
percentage of the outcomes for the two algorithms. As previously mentioned,
min-sum is in generally better. Moreover, a more detailed analysis of this results
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reveals that if both min-sum and simulated annealing terminate, than min-sum
does never provide a solution of higher cost with respect to simulated annealing.

Fig. 7. Cake graph for comparing min-sum and Simulated Annealing results (Color
figure online)

5 Conclusions and Future Work

In this paper we considered the model for power distribution with ancillary
lines proposed in [12]. We extend such model to consider CO2 emission and we
propose a decentralized solution approach based on a DCOP formalization of
the problem and the min-sum algorithm.

We empirically evaluate our approach on a set of benchmarking power grid
instances built according to the procedure proposed in [12] and we compare the
results obtained by min-sum with simulated annealing. Our results, suggests
that min-sum favorably compares with simulated annealing and it provides a
promising method for a distributed implementation of this model.

This work lays the basis for several interesting future directions. For example
an interesting aspect is to further extend the power grid model to better describe
realistic situations. A first extension might be to consider loads that can produce
energy (e.g., renewable sources) and handle the optimization problems related
to storing the excess of power created by such prosumers. Another interesting
aspect would be to consider in the optimization process other important fac-
tors for energy distribution such as energy prices, government regulations and
load/production forecasting.
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