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Abstract. Given its virtually algorithmic process, the Fugl-Meyer
Assessment (FMA) of motor recovery is prone to automatization reduc-
ing subjectivity, alleviating therapists’ burden and collaterally reduc-
ing costs. Several attempts have been recently reported to achieve such
automatization of the FMA. However, a cost-effective solution match-
ing expert criteria is still unfulfilled, perhaps because these attempts
are sensor-specific representation of the limb or have thus far rely on
a trial and error strategy for building the underpinning computational
model. Here, we propose a sensor abstracted representation. In partic-
ular, we improve previously reported results in the automatization of
FMA by classifying a manifold embedded representation capitalizing on
quaternions, and explore a wider range of classifiers. By enhancing the
modeling, overall classification accuracy is boosted to 87% (mean: 82%
± 4.53:) well over the maximum reported in literature thus far 51.03%
(mean: 48.72 ± std: 2.10). The improved model brings automatic FMA
closer to practical usage with implications for rehabilitation programs
both in ward and at home.

Keywords: Automatic motor dexterity assessment · Gesture classifi-
cation · Gesture representation · Sensor independent representation ·
Automatic Fugl-Meyer

1 Introduction

The economic burden of motor rehabilitation programs for patients with motor
disability due to stroke or traumatic brain injury among others to public health
systems as well as families is untenable [8]. Obvious measures to contain those
costs include reducing the continuous demand of expert supervision during the
rehabilitation therapy sessions. Robotic rehabilitation [12], virtual rehabilita-
tion [1] and telerehabilitation [2] are among a new generation of rehabilitation
therapeutic modalities which, with current status, already can match classical
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occupational therapy (moderate [3]) success on motor recovery, but which alle-
viate the need for continuous supervision. Moreover, the later two can easily
be delivered at patient’s home further reducing costs without compromising the
recovery with still margin for improvement.

Whether in ward or at home, these innovative therapeutic alternatives still
rely on an expert for something as routinary as the assessment of motor recovery
using a clinically validated scale such as the Fugl-Meyer Assessment (FMA) [4].
Since the FMA is applied routinely to monitor patient progress and its appli-
cation is almost algorithmic, it is no surprise that several attempts have been
made to automatize the assessment procedure [6]. The automatization of the
FMA can free therapist time, reduce any remainings of subjective appreciation
[5], and also afford the aforementioned therapeutic alternatives even greater inde-
pendence and wider home applicability. Ultimately, automatic assessment of the
patient motor recovery may proved to be the enabling element for home based
rehabilitation.

Despite the obvious interest to have an automatized version of the FMA, hav-
ing a definitive solution sufficiently reliable that can help the clinicians remains
unsolved. Even though we have suggested above that the assessment procedure
proceeds almost algorithmically, matching the human expert criterion with a
cost-effective solution is challenging. Differences in sensing strategies i.e. selec-
tion of the appropriate sensors, and their positioning in the assessment stage
whether on-body or off-body, differences in signal processing and analysis strate-
gies, and small variations in clinical application of the assessment among experts
are likely candidates to explain this current mild success of the computational
models developed for the task.

If the above hypothesized candidacies are preventing higher success of the
computational models, then it is likely that the combination of (a) developing
a body mechanics representation weakly dependent on the sensing strategy and
(b) optimizing the subsequent modeling decisions shall boost the accuracy and
success rates of the automatic assessment model. Focusing only on the upper
limb, our contribution here is a new abstract representation of the arm mechan-
ics that reduces the commonly tight dependency of the representation on the
acquiring sensor. This is achieved by projecting different sensing configurations
to a common space capitalizing on quaternions. Then, the classification stage is
flexibilized by testing a wide number of combinations between processing and
decision making stages. Preliminary results of this research (only 6 patients and
only 2 classification models) have been published in [22].

2 Related Work

Given the obvious benefits of having an automated version of the motor assess-
ment procedures, it is unsurprising that a number of solutions have been pro-
posed in the literature across different clinical scales e.g. the Arm Motor Ability
Test (AMAT) [9], the Wolf Motor Function Test (WMFT) [10,19], the Chedoke-
McMaster Hand Stage [11], and of course the Fugl-Meyer score [6,7]. These
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solutions either use expensive sensing geometries or their classification rate is
still far from satisfying. Moreover, although those methods with expensive sens-
ing setup have managed to obtain good results in controlled settings but they
tend to have an obtrusive factor in the sensor arrangement that makes them unfit
for the very purpose they were developed!. Additionally, these methods also use
the data from the sensors directly as features for their evaluation which makes
the solution sensor specific. Finally, several solutions for assessment of motor
dexterity following impairment have been further suggested with unobtrusive
low-cost sensing geometries e.g. [18,20], but since they do not rely on clinical
standard scales they are naturally of limited interest. In summary, a cost-efficient
solution capable of matching expert evaluation on clinically validated schemes
is still elusive.

3 Methods

3.1 Experiment Setup

Following consent, 9 patients with motor impairment from different origin under-
went FMA agreed to participate from two hospitals in Mexico; Hospital Univer-
sitario de la Benemérita Universidad Autónoma de Puebla (HU-BUAP) and
Hospital General Sur de Puebla (HGSP). The patients present different types
of neurological damage including: stroke, and traumatic brain injury, but all
require FMA as part of their rehabilitation process. Blinded pictures of the hos-
pital sessions at both hospitals are shown in Fig. 1. The participants where mon-
itored during the assessment performed by a trained clinician whilst their upper
limb kinematics were concurrently being monitored using two sensing geometries
(Fig. 1); (a) two Inertial Measuring Units (IMU) -one within an ad-hoc controller
of a virtual rehabilitation platform developed previously by our group [13] and
(b) one Microsoft KinectTM. Additionally, the experimental session was video
recorded for visual inspection purposes. Table 1 summarises the 10 items of the
Fugl-Meyer score for the upper limb.

To compensate for this small sample size1 additional data was further col-
lected from 15 healthy volunteers recruited among the faculty and students of
the Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE) in Mexico
executing the Fugl-Meyer exercises using the same setup and protocol as used
in the clinical data capture. The healthy volunteers carried out five repetitions
of the exercises defined in the upper extremity subsection of the FMA, simulat-
ing all three levels of motor dexterity (at their own interpretation after a brief
description by the experimenter). Data was segmented in a bespoken software
develop by our group was used to separate the samples corresponding to each of
the five repetitions, giving us a total of 750 synthetic samples (10 FMA exercises
× 5 repetitions × 15 subjects) for each of the 3 levels of FMA in addition to the
60 samples obtained from patients.

1 We are currently in the process of collecting further clinical data.
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(a) HU-BUAP (b) HGSP

(c) IMU sensing (d) Kinect sensing

Fig. 1. Experimental setup and sensing geometry. (a-b) Sessions of motor assessment
of patients at the two participating hospitals. (c) The placement of IMU’s yellow,
and color tracking reference Blue. (d) Location of the arm joints and relationship as
established by the Kinect sensor. (Color figure online)

Table 1. The 10 items Fugl-Meyer subscale for the upper limb. Upon execution, each
different exercise is scored 0 (no movement), 1 (clearly impaired movement) or 2 (nor-
mal or close to normal movement).

Exercise Description

1 Move hand from knee to same side ear

2 Move hand from knee to opposite side knee

3 Move hand from knee to lumbar spine

4 Raise hand from knee to 90◦ (pointing at horizon)

5 With elbow touching body rotate hand

6 Raise hand from knee to 90◦ sideways

7 Raise hand from pointing at horizon to straight up

8 With elbow touching body flex and extend hand

9 With elbow touching body rotate hand clockwise

10 Move hand from knee to nose five times as fast as possible
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3.2 Abstract Representation of the Arm Mechanics

To partially address our hypothesis, we propose a representation R that is non-
specific across a family of motion amenable sensors2 to maintain the classification
problem independent from the sensing technologies available at the rehabilita-
tion centers. This representation R is the result of a composition of functions.
First, transforming each sample of the sensors’ output S to an orientation space
represented by quaternions f where the dimensions are dictated by the limb seg-
ments upper arm (brachium), forearm (antebrachium) and hand (manus). Then,
the dimensional differences in variance are nullified using some normalization g.
Finally, by considering the movement during each FMA exercise as a trajectory
in the space, a (manifold) projection to a space of salient components is used
to reduce dimensionality while maintaining the most significant features h. The
full representation is illustrated in Fig. 2 and formally given by Eq. 1:

R = h ◦ g ◦ f(S) (1)

Fig. 2. Plot of the data during the different stages of composition. (S) Sensor data
acquired by either, (f) Limb segment orientation (illustrative), (g) Normalized data
from different FMA scores, (h) Projection of salient components using t-SNE.

The next subsections detail the last two transformations.

Normalization. To nullify dimensional variance one of three different normal-
ization schemes where used, namely: classical normalization to a unitary range,
regularization, and quaternion normalization. The first two consist in scaling the
data to avoid overfitting when training machine learning algorithms. The third
is avoids floating-point precession errors that will cause a quaternion not to have
a unit length The particular choice of each of these possible transformations lead
to different representations, all sharing their detachment of the sensing geometry.

Feature Extraction; Projection to Salient Component Space. A large
number of manifold embedding approaches (and its corollary dimensionality

2 Full abstraction from the sensing geometry is beyond the scope of this work. For
instance, we do not aim at being capable of achieving our goal of automatic motor
assessment from say thermal sensors.
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reduction application) exist, ranging from the classical Principal Component
Analysis (PCA) to the sophisticated Isomap. For a review of the topic, the reader
is directed to [21]. They all involve two steps; whether implicit or explicit; (1)
imposing a distance function defining the topology of the space, and (2) project-
ing to a “different” space, often with less dimensionality, either by choosing a
different view, i.e. a different coordinate set, and/or removing those dimension of
less interest3. Previously we have also explore the rotational effect of PCA [22].
Here, considering the dynamics of the exercises that we aim to decode we opted
for a projection with t-distributed stochastic neighbor embedding (t-SNE) [14].
t-SNE is a nonlinear probabilistic embedding which favours a similarity defini-
tion that abstracts the dynamics of the process as opposed to alternatives with
a similarity purely based on the manifold shape e.g. Isomap or Locally Lin-
ear Embedding, as exemplified by its impressive separation of the handwriting
MNIST dataset in the original publication. Specifically, t-SNE models each high-
dimensional object into a (normally) two or three dimensional point Fig. 3 by
converting the ambient Euclidean distances between datapoints into conditional
probabilities representing similarities among objects as per Eq. 2.

dist(xi, xj) = pxi,xj
=

exp(−||xi − xj ||2/2σ2
i )∑

k �=j exp(−||xi − xk||2/2σ2
i

(2)

where x ∈ X are the datapoints and σi is the variance of the Gaussian that is
centered on datapoint xi.

The projection itself minimizes the sum of Kullback-Leibler divergences over
all datapoints using gradient descent.

(a) (b)

Fig. 3. Visual comparison of two different projection techniques showing clear advan-
tage for using t-SNE in this particular domain. In both cases, the example corresponds
to data from exercise seven from the FMA, and the colors index the labelled assessment
score in that particular exercise. (a) First two salient dimensions using PCA. There
is no evident separability among the different classes. (b) First two salient dimensions
using t-SNE. The high separability among different classes is self-evident.

3 The definition of what is an interesting view of the dataset correspond to the domain
demands.
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3.3 Classification

Given the representation achieved with Eq. 1, the assessment itself consists in
labeling the observation with a score 0, 1 or 3 according to the Fugl-Meyer
scale. This is addressed here as a classical supervised classification problem. The
classification model partitions the space into subregions each one assigned a class
label. Figure 4 illustrates several partitioning possibilities. The problem is then
not so much to build a particular model, but to choose the best classifier in some
sense, often in terms of their capacity for generalization.

Fig. 4. Different separation possibilities for the same representation. Although the
depicted possibilities are all correct, they differ in their capacity to generalize.

To determine the best classification strategy different classifiers where trained
to compare using standard metrics:

– Accuracy = (TP + TN)/(TP + FP + TN + FN)
– Precision = TP/(TP + FP )
– Sensitivity = TP/(TP + FN)
– Specificity = TN/(FP + TN)
– F − score = 2 ∗ TP/(2 ∗ TP + FP + FN)

Where TP = true positives, TN=true negatives, FP = false positives and FN =
false negatives. Since there are 3 classes for each exercise, the confusion matrices
are summarized to the binary hit or miss labeling. For presenting the results,
the different metrics are later averaged across all ten FMA exercises.

Validation was attempted by means of classical cross-folding experimental
replication. A total of 2400 (= 2 × 3 × 4 × 10 × 10) classification exercises were
carried out using;

– 2 sensing geometries (IMU-based or Kinect-based),
– 3 different normalization methods (see section on normalization above),



Automatic Fugl-Meyer Assessment 159

– 4 different classifiers; Naive Bayes classifier [15], Random Forest (RF) [16], and
Support vector machines (SVM) [17] using linear and radial function based
kernels,

– 10 FMA exercises (see Table 1), and
– 10 fold repetition for cross-folding based assessment of internal (reproducibil-

ity) and external (generalizability) validity.

ANOVA at 5% significance was used to determine statistical significance.
Mann-Whitnney-U pairwise comparisons when ANOVA detected significant dif-
ferences in at least one treatment.

A leave one out classification comparison was made comparing results of
classifying healthy participants and patients using a mixed training set and clas-
sifying all exercises for one participant at a time.

4 Results

Table 2 summarizes the classification rates across the different metrics. The spe-
cific combination of quaternion normalization and SVM with radial basis func-
tion kernel sistematically affords the higher means (assumed to be associated to
generalizability) and lower standard deviations (std) (assumed to be associated
to reproducibility).

Figure 2 shows the average classification rates among the different classi-
fiers using quaternion normalization with three different sensing setups, exhibit-
ing similar results independent of the sensing technique used as hypothesized
(Fig. 5).

Fig. 5. Average classification for the different sensing setups. Three possible data inflow
combinations are shown: Using both IMU’s and Kinect data, using only the data from
the IMU’s, and that only of the Kinect sensor. (mean ± std)

The effect of including data from healthy participants is dissected in Table 3.
Understandably higher rates of classification are found for healthy subjects. This
is not to be misunderstood as inflated rates. Although it is tempting to quickly
argue that only data from patient should be accounted for, that is true only for
the evaluation, but not for the training. In other words, only classification of
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Table 2. Summary of classification rates achieved by the different approaches. In all
cases mean ± std is indicated. Top most results are highlighted in gray.

Accuracy

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 76.96±9.32 79.43±6.29 63.81±12.54 71.05±5.23
Regularization 71.02±8.56 73.43±5.98 69.26±11.03 80.23±5.62
Quaternion Normalization 74.48±5.23 86.49±2.74 84.18±4.62 93.12±1.09

Precision

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 69.05±8.34 72.18±7.30 54.20±12.61 62.07±4.96
Regularization 62.12±8.25 64.97±5.71 60.17±11.00 73.15±5.25
Quaternion Normalization 66.01±4.89 81.04±3.29 78.25±4.83 90.19±0.87

Sensitivity

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 69.13±9.67 72.15±6.31 54.32±12.56 62.15±4.60
Regularization 62.06±9.01 64.85±6.68 60.27±12.05 73.14±5.76
Quaternion Normalization 66.04±5.01 80.96±2.64 78.05±5.33 90.01±1.32

Specificity

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 81.67±8.43 83.78±6.92 70.24±12.49 76.59±5.12
Regularization 76.50±8.31 78.64±6.74 75.08±11.87 84.44±6.03
Quaternion Normalization 79.55±4.75 89.48±3.15 87.69±4.72 94.75±0.61

F-score

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 68.96±8.58 71.96±7.25 54.04±12.33 62.08±6.03
Regularization 61.82±8.53 64.80±5.62 60.04±11.76 73.00±5.33
Quaternion Normalization 66.02±5.92 80.78±2.34 78.00±4.67 90.06±0.45

AUC

{Naive Bayes} {Random Forest} {SVM lineal} {SVM radial}
Normalization 56.42±8.71 60.46±6.83 38.17±12.74 0.476±7.09
Regularization 47.43±8.47 50.91±5.97 45.20±11.58 61.75±5.84
Quaternion Normalization 52.57±5.45 72.46±2.85 68.42±4.86 85.32±0.31

patient observations has to be accounted, but the training of the model should
benefit of whatever information can be given. Dissociation of the benefit of
including these data in the training of the classifiers, but not counting them
in the classification rates is still pending (Fig. 6).

5 Discussion and Conclusions

The proposed representation affords high classification rates4 regardless of the
classifier and without depending on a specific sensing technology. The representa-
tion benefits from the so called quaternion normalization. Its low dependency on
the sensing geometry, suggested by the small differences in classification across
the tested geometries, suggests that the approach proposed facilitates its use in

4 Previously reported values were well below these figures.
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Table 3. Classification rates by type of participant. Dissociation of the effect in the
classification rates due to the participant status.

Exercise Patients Healthy Patients and Healthy

1 45.09 ± 7.89 95.75 ± 0.92 93.19 ± 2.66

2 44.84 ± 8.65 95.64 ± 1.92 92.65 ± 0.8

3 42.17 ± 3.41 98.83 ± 2.6 95.74 ± 0.34

4 45.39 ± 9.78 95.25 ± 0.26 93.11 ± 2.66

5 42.47 ± 2.63 96.34 ± 1.79 94.15 ± 1.52

6 39.14 ± 10.46 96.49 ± 2.99 93.19 ± 2.85

7 49.18 ± 8.9 95.61 ± 0.62 92.63 ± 2.43

8 45.93 ± 3.39 94.2 ± 0.96 92.05 ± 2.54

9 33.68 ± 3.48 94.81 ± 1.5 92.17 ± 2.36

10 50.36 ± 5.48 96.17 ± 0 92.43 ± 2.01

Fig. 6. Average classification for every exercise using leave one out classification results
are shown as mean ± std. The similarity of the classification seems to be directly
related to the level in the recovery hierarchy, during rehabilitation some movements are
recovered sooner than others in a predefined sequence, further analysis is required.

different rehabilitation settings including those where non-intrusive assessment
is required.

The incorporation of data from healthy participants, unfortunately limits the
generalization of these findings. Our previous results suggests these data may
be easier to classify than patient data [22], and thus the classification rates may
look like higher than they might have look shall only data from patient may
have been used. In this sense, we consider that to get a stronger validation of
our solution a bigger dataset only from patients data is necessary.

Although the present effort has enhanced the classification by exploring sev-
eral possible combinations, this is still open to mathematical optimization. We
are currently working to achieve optimal modeling by means of full model selec-
tion techniques.
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Apart from the use of the proposed method for upper extremity assessment
our proposal should be suitable for other kinds of movement analysis the pos-
sibilities being currently being discussed are directly related to the FMA scale
using whole body information. Other areas could be gait analysis and evaluation
of Parkinson syndrome tremors.
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