
CML-WSN: A Configurable Multi-layer Wireless
Sensor Network Simulator

Carolina Del-Valle-Soto1(B), Fernando Lezama2, Jafet Rodriguez1,
Carlos Mex-Perera3, and Enrique Munoz de Cote2

1 Campus Guadalajara, Facultad de Ingenieŕıa, Universidad Panamericana,
Prolongación Calzada Circunvalación Poniente 49, 45010 Zapopan, Jalisco, Mexico

{cvalle,arodrig}@up.edu.mx
2 Instituto Nacional de Astrof́ısica, Óptica y Electrónica, 72840 Puebla, Mexico

{f.lezama,jemc}@inaoep.mx
3 Telemática Telemetŕıa y Radiofrecuencia, 44190 Guadalajara, Jalisco, Mexico

carlosmex@ttr.com.mx

Abstract. Wireless Sensor Networks (WSNs) have large applications
in environments where access to human cannot be constant or where
reliable and timely information is required to support decisions. WSNs
must show high reliability, robustness, availability of information, mon-
itoring capabilities, self-organization, among other aspects. Also, engi-
neering requirements, such as low-cost implementation, operation, and
maintenance are necessary. In this context, a simulator is a powerful tool
for analyzing and improving network technologies used as a first step
to investigate protocol design and performance test on large-scale sys-
tems without the need of real implementation. In this paper, we present a
Configurable Multi-Layer WSN (CML-WSN) simulator. The CML-WSN
simulator incorporates a configurable energy model to support any sen-
sor specification as a one of its main features. The CML-WSN simulator
is useful because it allows exploring prototypes with much less cost and
time compared to the requirements needed in real networks implemen-
tations.

Keywords: Wireless Sensor Networks · Network simulator · C++ ·
Object-oriented programming

1 Introduction

Nowadays, from the most fundamental electrical appliances like toasters to the
most advanced devices like industrial machines, devices have the capability of
communicating with each other due to the advances in technology. This com-
munication is enabled by a network that connects each device so they can work
together towards a common goal such as reducing the risk in a manufacturing
process. In order to control all the devices, sensors are required to determine
when is safe to operate and which one should be selected. A wireless sensor
network (WSN) is the compound of nodes which collaborate in a common task.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

E. Sucar et al. (Eds.): AFI 2016, LNICST 179, pp. 91–102, 2017.

DOI: 10.1007/978-3-319-49622-1 11



92 C. Del-Valle-Soto et al.

These nodes have certain sensory capabilities and wireless communication that
allow building ad-hoc networks (i.e., without pre-established physical structure
or central administration) [1].

One of the main problems about ad-hoc systems is that there is no infrastruc-
ture, so the routes change dynamically. This dynamic change is due to fading,
interference, disconnection of nodes, obstacles, node movements, among others.
In consequence, problems such as quality of services, mobile battery-perishable,
security, reliability of routes and further more appear and cause packet loss [2].

The majoring of this work focuses on engineering and telecommunications,
specifically in the WSN field. The use of network simulators provides a more
accurate perception of topologies, technologies, transmission media, channel
design and pieces of equipment that best suit to the application that is being
designed. Moreover, network simulation plays a significant role in areas such as
engineering and research.

In this paper, we present a Configurable Multi-Layer WSN (CML-WSN)
simulator. The CML-WSN is based on discrete events and implemented in C++.
The simulator was intended to overcome some of the limitations presented in
other simulators. This new approach allows the user to operate in more than a
single layer, specifically in the Physical, MAC, and Network layers. Furthermore,
its design permits the inclusion of different routing protocols and functionalities
which translates into a scalable software.

The goal of creating CML-WSN simulator is to have the ability to manipulate
parameters as needed and observe different network behaviors. Implementing a
new simulator from the ground up allows a better view of the nodes, change
features and models, and analyze several kinds of statistics needed to study the
performance of routing protocols and its influence on the network. The only
requirement is to have the data sheet of the wireless sensor chip which the user
wants to use. The simulator will provide the energy consumption from the pri-
mary task of a node in the network, some of the usual tasks are starting, shut-
ting down, receiving, transmitting, switching, CSMA (Carrier Sense Multiple
Access/Collision Avoidance) algorithm and microcontroller.

Another purpose of CML-WSN is to deploy large networks with low costs
considering real parameters. The results of a simulation can provide good scala-
bility projections. Besides, our CML-WSN employs an energy model as close to
the activity of a common node to optimize future decisions.

Also, with the simulation process, the time can be compressed or expanded
allowing an increase or decrease of the speed of the research phenomena. In other
words, the design allows the user to easily create and modify highly complex and
different scenarios based on large amounts of various input parameters like power
of reception and transmission locally and globally, size of the packet, packet’s
transmission rate, buffer storage size, routing protocol, sampling time, energy
model, states of each node and others.

The chosen programming language was C++ due to its fast performance and
ease to compile in multiple platforms making it a tool that students, network
technicians, and researchers can use to analyze and design better WNS networks.



CML-WSN Simulator 93

2 Related Work

WSNs are extensively studied with several network simulators that analyze var-
ious performance and power consumption parameters. However, the use of these
simulators is intended to study certain topologies or already defined and para-
meterized environments. The comparison between WSN simulators is out of the
scope of this paper. However, in this section we give a brief overview of some of
the main-stream WSN simulators highlighting their main characteristics to put
in context our CML-WSN. For an extensive comparison of WSN simulators, the
reader can refer to [3–6].

NS-2 [7] is a discrete-time simulator that can support multiple protocols for
wired, wireless and satellite networks in all layers. This software contains modules
that cover a broad group of applications, protocols, routing, transport, different
types of links and routing strategies and mechanisms. However, the simulator
is not easy to understand and operate, and it was not specifically designed for
WSNs simulation.

OPNET (OPtimized Network Engineering Tool) [8,9] Modeler permits to
model and simulate communication systems. It allows to design and study net-
works, devices, protocols, and applications, providing flexibility and scalability.
In addition, it simulates diverse networks where it can involve a large number of
protocols and specific variables that the user can modify and study. Although it
offers a C++ simulation class library and GUI support, it is too slow for MAC
protocol simulations and does not have a good wireless mobility model.

Among other network simulators, one of them is TOSSIM [10], which esti-
mates the energy consumption while considering the batteries lifetime of the
devices and set realistic scenarios with common platforms. TOSSIM [10] is a
TinyOS based interrupt-level discrete event simulator. It simulates only sen-
sor applications ported to the i386 architecture, so it is only compatible with
TinyOS. It does not capture CPU time neither energy consumption.

Consequently, one of the best ways to calculate a more precise energy saving
model for WSNs is having extensive knowledge of the variables that affect the
energy consumption of sensors and in what proportion. In a network, there
are many variables that directly or indirectly affect energy consumption, eg.,
retransmissions of packets, collisions, and so on. Besides, the use of the channel
is a variable that directly affects the MAC layer algorithm since nodes have to
wait a lot of time if the channel is continuously busy. Moreover, control packets
used by protocols significantly increase the amount of packets flowing in the
network which causes collisions and, although nodes in WSN are designed to
handle low processing, storing large routing tables usually translates into the
sensors spending more energy in the development and maintenance. Another
important factor is the establishment of links among nodes, which is proposed
by a routing protocol. If the links are few, is more likely that some fail and cause
others to become bottlenecks for traffic [11].

This overview enables us to propose a network simulator based on an event-
driven system where we have an approach to the Physical, MAC and Network
layers. The proposed CML-WSN simulator allows the implementation of any



94 C. Del-Valle-Soto et al.

topology, several routing protocols, observe and count collisions and retransmis-
sions and establish a model to evaluate energy consumption power techniques.

3 Simulator Overview

In this section, we give a brief overview of our CML-WSN simulator architecture.
Our proposed tool is a discrete event simulator implemented in C++ for WSNs.
The CML-WSN simulator allows users to create network topologies, configure
devices, inject packets and change network settings.

Figure 1 shows the general overview of the CML-WSN simulator. It consists of
three blocks: inputs, the discrete event simulation of the WSN through a scheduler,
and outputs. Despite the simplicity of the general structure, the simulator provides
the ability to debug, test and analyze algorithms in a controlled environment for
networking research. Some of the features of the CML-WSN simulator are:

– Viewing code: Window displays the machine code at runtime.
– Debug On: Ability to enable or disable the debugger.
– Step by step execution mode.
– Run/Stop program execution.
– Profile: Displays usage statistics system.
– Traffic monitoring capabilities.
– Energy model required for adequate analysis of the entire platform.
– Physical Layer: 802.15.4 physical layer is split into two sub-layers: PHY data

service and PHY management which are responsible for transmitting and
receiving messages through the physical environment.

– MAC Layer: Here CSMA/CA algorithm and detection carrier were imple-
mented.

– Network Layer: It is composed for the routing protocol.

Inputs:

Wireless Sensor Network

-Number of nodes
-Maximum hop number
-Node coverage range
-Node position
-Fixed or random topology
-Data length
-Data rate
-Maximum number of neighbors
-Maximum hierarchy level
-Maximum buffer size
-Type of node states 
(ON, OFF, WAIT)
-Type of routing packets
-Frequency of Hello packets
-Process time
-Transmission time
-Propagation time
-Sampling period
-Energy model Node 2 Node 4

Node 5

Node 3

Node 1
Sink Node

Scheduler Outputs:

-Time Stamps
-Energy Statistics
-General Statistics
-Routing Tables
-Connectivity Matrix

Entity in charge of manage and control of the events.
It also has a global view of the entire network and the 
ability to record every event during the simulation.

Fig. 1. General overview of CML-WSN simulator.



CML-WSN Simulator 95

Besides, the core of the network simulator is composed of two main objects:
the node and the scheduler. In the next subsections, we explain the structures
of these two objects in the CML-WSN simulator.

3.1 Node Structure

The Node is an autonomous entity (object) that has properties and functions
such as transmit, receive, turn on and off, listen, switch and so on. In the CML-
WSN simulator, the node is an independent entity that performs many tasks
during the simulation period. Figure 2 shows the node behavior during a simu-
lation. Nodes are turned on and off, consume energy, listen to the channel, send
and receive packets, have input and output packet queues and manage routing
tables. All these tasks are performed by functions that accept input parameters
and have output variables.

Start Node
Node listens the 

channel

Is the 
channel 
busy?

Random delay

Node transmits 
Hello packet

Is ACK 
received?

Node saves 
neighbors in its 

table

Node wants to 
transmit a 

packet

Does the 
node have 
the route?

Node transmits

Fig. 2. Basic structure of a node in the CML-WSN simulator.

All the node tasks and interactions are organized and supervised by an exter-
nal entity called network scheduler. The scheduler is described in next subsection.

3.2 Scheduler Structure

The scheduler is the entity responsible for control and management of all events
during simulations. Moreover, it has a global vision of the entire network.
Figure 3 shows the scheduler events and actions. The scheduler organizes the
events as a queue and performs actions by times. The scheduler is responsible
for handling these events regardless of category. Each event is distributed and
carried to the node. Then, the node processes the event depending on the type



96 C. Del-Valle-Soto et al.

SCHEDULER

ACTIONS

EVENTS

On state

Hello
packet

Request

Off state On node

Packet CSMA/CA 
algorithm

Check 
table

Statistic 
timer

Check ACK

Turn on all 

nodes

Send HELLO 
packet to make 

the topology

When the 
coordinator 

needs a request

Turn off 

nodes

Turn on 
a specific 

nodes

Routing 
protocol and 

traffic packets

Look for 
routes in 

routing tables

CSMA/CA 

algorithm

Get times to 
record simulation 

information

Check if an ACK is 

received

Fig. 3. Scheduler main functions in the CML-WSN simulator.

(e.g., if the event type is packet, the node opens it, processes it and sends or
receives it). Thus, nodes are related to each other through the exchange of events
that are controlled by the scheduler.

3.3 Input and Output Variables

A simulator is a program that performs experiments with a model mimicking the
operation of a complex system. This process involves several stages such as: sys-
tem definition, model formulation, data collection, implementation, validation,
experimentation, and documentation.

Due to these stages, there are variables that in and out of the system. Left
side of Fig. 1 lists some of the input parameters used in our simulator. The
inputs can be read from a .txt file. Notice that the input parameter list includes
different data allowing the user to modify the conditions of the simulation. Right
side of Fig. 1 shows the outputs after simulation ends. The output consists in 5
.txt files with general information of the simulation process, and also with useful
stats for analysis.

The first output file contains the data about individual per node and net-
work. Also, it provides the stats for global consumption of each kind of energy
used on the main tasks of the nodes. The second file includes the number of
delivered packets, received packets, types of packets, packets loss due to a colli-
sion or interference in the channel and much more by each node and the whole
network. The third file has the routing tables used by each node according to
the rules of the selected routing protocol. The fourth file consists of the con-
nection matrix between the nodes which will help verify the information about
the neighbors of each node in the network. The fifth and last file includes the



CML-WSN Simulator 97

general resulting parameters from the processes of each node and the time data
when the operations were executed.

The resulting collection of stats provides insights into the working procedure
of each routing protocol such as the redundancy in the tables in case a path is
inaccessible. This output from the simulator is a set of .txt files formatted to
be easy to read by the user. The main reason to select this type of file was to
allow a simple interaction with the data and to be able to create graphics with
ease. Moreover, the data collected from the files allows the gathering of routing
metrics such as the number of attempts to listen the channel, retransmissions of
packets, delay times, overhead, special packets from the routing protocol, among
others.

4 Framework and Functionality

One of the most important features in WSNs is the ability of a node to process
and manage the network traffic and make decisions about processing received
data.

Likewise, a node can make decisions as a function of collected data, and if
they have low relevance, the node will not generate unnecessary traffic thus sav-
ing battery and avoiding possible congestion on the network. These decisions
are made based on a routing protocol and can be improved or adapted to the
network conditions through a network simulator that optimizes certain parame-
ters before the implementation. Current available simulators were not suitable
for high investigation level because of the lack of flexibility for modifications or
impossibility to incorporate new protocols.

Therefore, we designed and implemented a network simulator based on events
using the C++ language. The simulator was conceived with the paradigm of
“object-oriented programming”, where nodes are autonomous entities (objects)
that have properties and functions. Simulation events are managed by a planner
(i.e., the scheduler) who serves as “tasks organize” for objects involved in the
simulation. Some advantages of having made the simulator in C++ was the
speed and the capability of managing various classes as separate entities.

4.1 Physical Layer

One of the main problems about ad-hoc systems is there is no infrastructure, so
the routes change dynamically. This is due to fading, interference, disconnections,
obstacles, node movements, etc. In consequence, issues such as quality of services,
mobile battery-perishable, security, reliability of routes appear and cause packet
loss. These factors (e.g., noise, fading, shading and modulation signal) generate
interference. As a basic Physical layer, we propose a percentage of packet loss
per link based on the conditions of the environment, where the channel is not
ideal.



98 C. Del-Valle-Soto et al.

4.2 MAC Layer

MAC layer is designed under the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism [12], established by IEEE 802.15.4/Zigbee
standard which takes into account a channel evaluation algorithm to prevent
collisions, called clear channel assessment (CCA). Moreover, at this layer we can
graduate the radio coverage for nodes and thus, variation of the transmission
and receiving power.

4.3 Network Layer

In communication networks, there are routing protocols classified into two
groups: proactive routing protocols and reactive routing protocols [13,14]. When
nodes are under a reactive protocol they ask for a route only when it is needed.
This involves high latency for the first packet and some independence among
routes. The implementation of this layer also enables analysis of node spatial
distribution in a uniform and non-uniform way and analysis of traffic load dis-
tribution of balancing links.

4.4 Functions in the Simulator

Figure 4 present a scheme showing relationships among the main functions of
the simulator. First of all, the connectivity matrix of nodes describes nodes that
are connected. Therefore, traffic packets begin. This is where each node receives
a packet, opens it, processes it and takes a decision. This decision can be found
in its routing table and send the packet or simply forward it. Meanwhile, nodes
are consuming energy, and we can see statistics when needed.

The startUp function turns on generically all nodes or one that has been
turned off. It can turn on them in a uniformly random way or in a particu-
lar distribution. The channelMonitor function gets the input time variable in
which the node will listen to the channel to see if a delay is needed or not. The
CSMACA algorithm function execute the CSMA/CA algorithm, with respect to
the decision-making loop. The eventSignal function classifies the type of events
to be processed in the network. This function has subfunctions processing to
redirect each of the events. It gives flexibility and organization. The Generator
function generate packets with respect to the type of packet needed by the node.
The receivePacket is part of three separate functions which together receive and
process a packet at a node: receiving, opening and processing. This function
determines the time when the packet arrives and gets the source from which
came the packet. The openPacket function takes the packet time and it opens
the packet in the current node to establish what the source and destination of
the packet are. The process function processes the packet according to the type.
There are a number of functions associated with processing of every single type
of packets on the network. The updateTable function updates the routing tables
of the nodes. The function fills the fields to know all the possible routes to the



CML-WSN Simulator 99

eventSignal statisticsFunctionrequestGenerator

startUp

channelMonitor

CSMACAalgorithminit

CSMACAalgorithmCCA

CSMACAalgorithmdelayr

HELLOGenerator

receivePacket

openPacket

processPacket

modeOff

processHELLOPacket

processACKPacket

processTrafficPacket

processRequestPacket

processAndRequestPacket

ackGenerator

updateTable

trafficGenerator

ansrequestGenerator

Fig. 4. Main functions in the CML-WSN simulator.

destination that were learned. Here there are parameters for each routing pro-
tocol such as flags for valid routes, complete routes or quality of each path. The
modeOff function allows a node turns off and it cannot send or receive packets
and immediately its routing table is cleaned. Finally, statisticsFunction function
can be called at any time of simulation time. Here there are the statistics of
network processes. It can have local statistics (by node) or global statistics (over
the entire network). Packet statistics, collisions, energy pattern, and so on are
obtained.

5 Results and Discussion

A simple WSN of 5 nodes was implemented to demonstrate how the network
simulator operates. The physical modeling of the channel was done obtaining a
certain percentage of the packets loss on each link. In the beginning, each node
is turned on randomly. Each node starts discovering the network by sending
HELLO packets. Then, when a node listens to a HELLO packet, it replies with
an ACK packet. When a node receives an ACK packet, it records the node
that sent it into the neighbors table which causes the establishment of a link
and a possible active route. Thus, when the exchange of HELLO and ACK
packets ends, the nodes can start sending regular traffic packets to the required
destinations.

For this particular example, the network was designed to follow the hier-
archical routing protocol [15] where there is a sink node or base station which
becomes the unique destination for all the nodes in the network. Then, the nodes
establish parent-child relationships according to the rules of the routing protocol



100 C. Del-Valle-Soto et al.

Table 1. Node output statistics.

Traffic Overhead Retransmission Energy (J) Neighbors

Node 1 100 40 30 0.137689 [2, 3, 4]

Node 2 100 49 39 0.270185 [1, 3, 4, 5]

Node 3 100 48 38 0.213067 [1, 2, 4, 5]

Node 4 100 47 37 0.213059 [1, 2, 3, 5]

Node 5 100 37 27 0.200958 [2, 3, 4]

and hierarchies are formed between the nodes which are saved into the neigh-
bor table, so each node knows the relationship that it has with each neighbor.
After a while, the network operates long enough to have exchanged all kind of
packets (i.e., overhead and traffic). Meanwhile, since each node is on it starts
consuming energy for every activity that it performs individually as a part of
the network. Which means that each node spends energy in turning on and off,
switching, listening to the channel using the algorithm CSMA/CA, transmitting
and receiving packets and using the microprocessor.

After completing the simulation, the program outputs a series of files which
contain relevant statistics about the process. Table 1 present the Node informa-
tion at the end of the simulation. It consists of information of traffic packets,
overhead (i.e., data packets used by protocols), retransmission and energy gen-
erated by each node. Also, the neighbors of nodes are provided as information
of the connectivity of the network.

The general stats are presented in Table 2. It includes a global information of
the packets (e.g., traffic, overhead, packet loss, retransmission) and also global
information about the energy utilized for the network.

For more details on the application of the CML-WSN simulator, the reader
can be referred to [16], where the CML-WSNwas compared to a real 100-Nodes
WSN, with satisfactory results.

Table 2. General output statistics

Packets Energy (J)

Traffic 500 Start 0.000001

Overhead 221 MCU 0.28125

Lost by collision 114 Switching 0.002921

Lost by interference 64 Transmission 0.6022275

Retransmission 171 CSMA/CA 0.008829

Dropped 6 Shutdown 0.000007

Receiving 0.139677

Total 1.03496



CML-WSN Simulator 101

6 Conclusions and Future Work

The Internet of Things comes from the evolution of telecommunications and
information technologies. Therefore, to push its potential it is important to
improve and understand better the infrastructure that makes it possible. A fun-
damental part of it are the WSNs, which allow the communication of sensors
to gather intel of their surroundings. They collaborate as a team not only to
collect data but to process it as information. To comprehend and design better
networks, different simulators have been created to date (e.g., NS-2 [7], TOSSIM
[10] and OPNET [8]).

Unfortunately, these simulators usually have a restricted number of models
for each layer, and in many cases they are not realistic models, i.e. the phys-
ical layer using free space model which is certainly a good approach for some
basic analysis but it may differ from real data collected from deployed networks.
Besides, such simulators do not allow the user to add functionality to them.
These constraints have as a consequence that the information and statistics only
focus on particular areas which make it harder to acquire a global overview of
the results.

For that reason, a network simulator, called Configurable Multi-Layer WSN
(CML-WSN) simulator, was designed and developed to be able to implement dif-
ferent routing protocols, propose improvements, analyze performance parameters
and apply optimized parameters related to WSNs. The CML-WSN simulator is
capable of working on the Physical, MAC and Network layers, which allows the
user to collect more information about each node and a comprehensive overview
of the network. The simulator outputs a set of .txt files which enables the user
to read quickly the results and to export it to other software to generate charts.
The next step is to add a user-centered designed Graphic User Interface to the
simulator that improves the interaction during the setup and results. Further-
more, adding the possibility of designing the network graphically and obtaining
the information either raw or as a set of predefined charts. Lastly, aiding the
user to make smarter decisions on how to build a WSN by understanding how
the design and each sensor affects it.

References

1. Luo, H., Liu, Y., Das, S.K.: Routing correlated data in wireless sensor networks: a
survey. IEEE Netw. 21(6), 40–47 (2007)

2. Kulkarni, N., Prasad, R., H.C.N.G.: Performance evaluation of AODV, DSDV &
DSR for quasi random deployment of sensor nodes in wireless sensor networks. In:
International Conference on Devices and Communications (2011)

3. Korkalainen, M., Sallinen, M., Krkkinen, N., Tukeva, P.: Survey of wireless sensor
networks simulation tools for demanding applications. In: International Conference
on Networking and Services, pp. 102–106, April 2009

4. Yu, F., Jain, R.: A survey of wireless sensor network simulation tools. Washington
University in St. Louis, Department of Science and Engineering (2011)

5. Musznicki, B., Zwierzykowski, P.: Survey of simulators for wireless sensor networks.
Int. J. Grid Distrib. Comput. 5(3), 23–50 (2012)



102 C. Del-Valle-Soto et al.

6. Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless
sensor networks (WSNs). J. Wirel. Netw. Commun. 5(1), 19–47 (2015)

7. McCanne, S., Floyd, S.: The LBNL network simulator (1997). http://www.isi.edu/
nsnam

8. Korkalainen, M., Sallinen, M.: A survey of RF-propagation simulation tools for
wireless sensor networks. In: International Conference on Sensor Technologies and
Applications, pp. 342–347, July 2010

9. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In:
ACM International Workshop on Principles of Mobile Computing, pp. 38–43, Octo-
ber 2002

10. Mora-Merchan, J., Larios, D., Barbancho, J., Molina, F., Sevillano, J., Leon, C.:
mTOSSIM: a simulator that estimates battery lifetime in wireless sensor networks.
Simul. Model. Pract. Theory 31, 39–51 (2013)

11. Shakshukia, E., Malikb, H., Sheltamic, T.: A comparative study on simulation vs.
real time deployment in wireless sensor networks. J. Syst. Softw. 84, 45–54 (2011)

12. LAN/MAN Standards Committee: Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal
Area Networks (WPANs). IEEE Computer Society (2006)

13. The IETF website (2003). http://www.ietf.org/rfc/rfc3561.txt
14. The IETF website (2007). http://www.ietf.org/rfc/rfc4728.txt
15. Del-Valle-Soto, C., Mex-Perera, C., Olmedo, O., Orozco-Lugo, A., Galván-Tejada,

G., Lara, M.: An efficient multi-parent hierarchical routing protocol for WSNs. In:
Wireless Telecommunications Symposium (WTS), 1–8 April 2014 (2014)

16. Del-Valle-Soto, C., Mex-Perera, C., Olmedo, O., Orozco-Lugo, A., Galván-Tejada,
G., Lara, M.: On the MAC/Network/Energy performance evaluation of wireless
sensor networks: contrasting MPH, AODV, DSR and ZTR routing protocols. Sen-
sors J. 14, 22811–22847 (2014)

http://www.isi.edu/nsnam
http://www.isi.edu/nsnam
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc4728.txt

	CML-WSN: A Configurable Multi-layer Wireless Sensor Network Simulator
	1 Introduction
	2 Related Work
	3 Simulator Overview
	3.1 Node Structure
	3.2 Scheduler Structure
	3.3 Input and Output Variables

	4 Framework and Functionality
	4.1 Physical Layer
	4.2 MAC Layer
	4.3 Network Layer
	4.4 Functions in the Simulator

	5 Results and Discussion
	6 Conclusions and Future Work
	References


