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Abstract. The current energy scenario requires actions towards the
reduction of energy consumptions and the use of renewable resources.
To this end, the energy grid is evolving towards a distributed architec-
ture called Smart Grid (SG). Moreover, new communication paradigms,
such as the Internet of Things (IoT), are being applied to the SG pro-
viding advanced communication capabilities for management and con-
trol. In this context, a microgrid is a self-sustained network that can
operate connected to the SG (or in isolation). In such networks, the
long-term scheduling of on/off cycles of devices is a problem that has
been commonly addressed by centralized approaches. In this paper, we
propose a novel IoT-microgrid architecture to model the long-term opti-
mization scheduling problem as a distributed constraint optimization
problem (DCOP). We compare different multi-agent DCOP algorithms
using different window sizes showing that the proposed architecture can
find optimal and near-optimal solutions for a specific case study.

Keywords: Multi-agent · Smart Grid · IoT · Microgrid · Optimization

1 Introduction

The current world scenario including global warming, increase in carbon emis-
sions, and the growing world population and power demand has led to govern-
ments, energy utilities, and research centers to take concrete actions towards the
reduction of energy consumptions and the use of renewable resources [1].

Due to this, the electric grid has evolved over the last decades to a highly
automated energy network, widely known as Smart Grid (SG). The SG is an
advanced power network that incorporates two-way communication for efficient
control, reliability and safety [2]. Moreover, the SG abandons the centralized
nature of the traditional electric grid towards a decentralized architecture in
which the electricity is produced in a distributed way, and customers can be
producers and consumers (i.e., prosumers) at the same time [3].

In this scenario the concept of microgrid provides a complementary solution
to achieve more efficient energy management in small areas [4]. A microgrid is a
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small self-sustained power network, with local distribution and local generators
that uses renewable energy (such as solar, wind, biomass, among others). More-
over, a smart microgrid can be seen as an independent home management system
that uses a combination of the electric home network and the Internet to manage
home appliances and local generators in an intelligent and efficient way. Both
energy consumption and generation should be considered to save energy cost at
the user end [5]. In addition, a key element for a microgrid is peer-to-peer com-
munication and plug-and-play functionalities, allowing distributed control and
scalability without significant modifications of the grid.

Different technologies used in other industrial applications, such as sensor or
wireless networks, can be adopted for the communication of the devices within
the SG. Nevertheless, to reduce the number of communication protocols and to
handle a significant amount of data, the Internet of things (IoT) arises as one
of the most recent enablers of the SG, and it is expected to continue playing a
crucial role in the evolution of the SG [2,6].

Figure 1 shows a SG and a microgrid as a home management system. One
of the main problems to tackle in a microgrid is the control and management of
resources through the scheduling of on/off cycles of devices. A trivial solution
can be to turn on the micro generators all the time and storage the exceeded
energy in batteries. The main problem with this trivial solution is that life cycle
of generators and batteries is drastically reduced, and there is a cost associated
with excessive energy generation. For this reason, a more efficient solution to
minimize the cost involves the scheduling of on/off cycles of the devices (also
known as the dispatch problem) in the microgrid.

Wind Solar

Fuel Cell Batteries

Controlled microgrid devices

Non-Controlled microgrid devices

The microgrid

Load: IoT Consumers

Fig. 1. Smartgrid and microgrid.

The optimal scheduling of on/off cycles of devices in the microgrids can be
done in two ways, centralized and decentralized [7]. The centralized approach has
the advantage of treating the system as a whole, hence allowing global optimiza-
tion. However, a centralized approach lacks flexibility since adding new devices
to the system implies the recalculation of the entire scheduling, and robustness
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because losing the central unit shut down all the system [8–10]. On the other
hand, the decentralized approach is more flexible, allowing the addition of new
devices and performing the optimization in a distributed way according to the
tendency of intelligent distribution networks (i.e., the SG).

So far, the decentralized approach has been applied to the optimization
scheduling for a particular time without considering long-term optimization [11–
13]. However, recently several efforts have been devoted to extend the Distributed
Constraint Optimization Problem (DCOP) model so to take system dynam-
ics into consideration. The most prominent approach in this perspective is the
Dynamic DCOP model (D-DCOP), where the system evolution is modeled as a
sequence of canonical DCOPs computing a new solution each time the system
changes (trying to re-use as much as possible the previous solution) [14].

While D-DCOP techniques introduce dynamism to DCOPs, they generally
do not capture the sequential nature of the problem: they simply react to changes
but do not plan for the best sequence of actions.

Moreover, in many real applications, we also need to take into account the
uncertainty related to system dynamic. Recently Markov models have been used
to capture the coupling aspect of D-DCOPs in which the DCOP in the next
time step is a function of the value assignments in the current time step [15].
A major challenge with this interesting approach is that the problems become
rapidly intractable when the size of the problem (e.g., the number of variables
for the underlying DCOP) grows.

In this paper, we propose to solve optimal scheduling of on/off cycles for a
home microgrid as a multi-agent decentralized approach explicitly considering
long-term optimization into account. To this end, each controllable device is
modeled as an independent agent with the ability of peer-to-peer communication
with other devices (i.e., other agents) in the microgrid. Specifically, we model
the problem as a DCOP and we use different off-the-shelf approaches to solve
such problem1.

In more detail, we consider Synchronous Branch and Bound (SynchBB), Dis-
tributed Pseudotree-Optimization Procedure (DPOP), Memory-Bounded DPOP
(MB-DPOP) and Asynchronous Forward Bounding (AFB) [16], applied to the
long-term optimization task.

We compare the performance of such algorithms against the optimal solu-
tion returned by a centralized approach. Moreover, we compare the run time, the
number and the size of messages for the DCOP algorithms. To solve the long-
term optimization problem while maintaining the model tractable, we split the
problem into time windows. The results show that, even when the multi-agent
distributed approach provides optimal and near-optimal solutions for small win-
dow sizes, it pays a large computational cost associated with the interaction of
agents for large window sizes.

1 We implemented the DCOP algorithms in FRODO2 and JaCoP. Both available in
http://frodo2.sourceforge.net and http://www.jacop.eu respectively.

http://frodo2.sourceforge.net
http://www.jacop.eu
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2 Problem Formulation

We model the microgrid as an IoT-microgrid architecture shown in Fig. 2. This
IoT-microgrid architecture has two main blocks. The first block is composed of
generators (G) and storage devices (S) (bottom right side of Fig. 2). The gen-
erators and storage devices can be grouped as controlled (e.g., fuel cell gener-
ators and batteries) and non-controlled (e.g., generators dependent on weather
conditions) devices. The second block correspond to the Load formed by IoT
consumers (C) (bottom left side of Fig. 2). Such IoT consumers can be differ-
ent smart appliances, such as smart metering infrastructure, sensors, and other
smart devices used for home automation.

The two blocks (i.e., generators and storage devices, and IoT consumers) are
linked together and have a connection to external entities, such as the cloud and
the SG respectively (upper side of Fig. 2). From the cloud, weather predictions
and other information, such as temperature or electric load forecasting, can
be retrieved from devices for management and control. Consumers and non-
controlled devices provide information as input for the optimization task while
the controllable devices can perform actions to modify the conditions of the
IoT-microgrid.

G1:Wind G2:Solar

G3:Fuel Cell S1:Batteries

C1:Controlled 
Devices

C2:Control 
Devices

C3:Hubs C4:Sensors

The Cloud

Load: IoT Consumers

Controlled microgrid devices

Non-Controlled microgrid devices

Bi-directional 
Communication

and
Energy supply

Generators and storage devices

Fig. 2. IoT-microgrid architecture.

In the following, Ptype,i(t) refers to the production or quantity of energy pro-
vided by generators i = {1, 2..., Ntype} of some type of energy type = {1, 2..., N}
(e.g., wind or solar predictions provided by the cloud) at time t. PBC,j(t) and
PBD,j(t) correspond to the energy charge/discharge status respectively of bat-
tery j = {1, 2, ...,M} at time t. PUE(t) and PEE(t) is the amount of undelivered
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and exceeded energy at time t. Finally, C is the cost associated with the pro-
duction or use of each energy.

Our objective is to minimize the cost of generated (Egen) and storage energy
(Estorage), while at the same time keep the balance between production and
consume (Edisbalance) into the microgrid. The objective function is defined as:

Minimize f =
T∑

t=1

(Egen(t) + Estorage(t) + Edisbalance(t)) (1)

where:

Egen(t) =
N∑

type=1

Ntype∑

i=1

Ptype,i(t) ∗ Ctype,i(t) (2)

Estorage(t) =
M∑

j=1

(−PBC,j(t) ∗ CBC,j + PBD,j(t) ∗ CBD,j) (3)

Edisbalance(t) = PUE(t) ∗ CUE − PEE(t) ∗ CEE (4)

Subject to the following constraints:

– Kirchhoff law or power balance:
N∑

type=1

Ntype∑

i=1

Ptype,i(t) +

M∑

j=1

PBD,j(t) + PUE = Load(t) +

M∑

j=1

PBC,j(t) + PEE(t); ∀t (5)

where Load(t) is the energy required for all the consumers at time t. Prediction
of the Load can be provided by the cloud in the IoT-microgrid architecture.

– Energy type production limits at time t

Ptype,i(t) ≤ Plimtype,i
; ∀type, i, t (6)

– Storage, charge and discharge battery limits at each time t

PStorage,j(t) ≤ PlimStorage,j
; ∀j, t (7)

PBD,j(t) ≤ PlimBD,j
∗ X(t); ∀j, t,X ∈ 0, 1 (8)

PBC,j(t) ≤ PlimBC,j
∗ Y(t); ∀j, t,Y ∈ 0, 1 (9)

where PStorage,j is the maximum power capacity of the jth battery, and X
and Y are boolean variables used to avoid that the jth battery charge and
discharge at the same time (i.e., X(t) + Y(t) ≤ 1;∀t).

– Charge and discharge limits at time t considering period t − 1

PBD,j(t) − PStorage,j(t − 1) ≤ 0;∀j, t (10)
PBC,j(t) + PStorage,j(t − 1) ≤ PlimStorage,j

;∀j, t (11)

– State balance of the battery

PStorage,j(t) = PStorage,j(t − 1) − PBD,j(t) + PBC,j(t);∀j, t (12)
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This formulation can be optimally solve using Mixed-integer linear program-
ming in a centralized fashion [7]. Different from [7], in the next section we present
a long-term decentralized approach that allows solving the problem using agents
and DCOP algorithms.

3 Long-Term Multi-agent Optimization

As stated in Sect. 2, in this paper we consider a microgrid with consumers, gener-
ators and storage devices. For simplicity, in this section we consider a microgrid
with only one solar generator, one wind generator, one fuel cell generator, and
one storage device (i.e., one battery). We also assume perfect predictions of solar
and wind generation. Moreover, the consumers are grouped all together as a joint
Load, also known in advanced.

With these considerations, in Fig. 3 we present a distributed multi-agent
model for the long-term optimization scheduling of on/off cycles. In this model,
agents are the elements (e.g., the fuel cell generator (FC), battery charge (BC)
and battery discharge (BD)) that can perform an on/off action to optimize the
total cost of energy production in the long-term. These agents receive informa-
tion of the Load and weather conditions (i.e., consumers and renewable energy
generation) as input, and perform optimization in a distributed way.

Input

Initial conditions:
-Fuel Cell
-Battery Charge and 
Discharge status

Predictions:
-Wind power
-Solar power
-Load

Distributed Optimization

Agent 3

Battery 
Discharge

Agent 2

Battery 
Charge

Agent 1

Fuel
Cell

Fig. 3. Multi-agent distributed model.

The decentralized multi-agent architecture enables to treat the problem as
a DCOP, allowing the use of distributed multi-agent algorithms such as AFB,
DPOP, MB-DPOP, and SynchBB.

The multi-agent algorithms to solve DCOP (e.g., AFB, DPOP, MB-DPOP
and SynchBB) distribute the processing among agents. However, optimally solv-
ing a DCOP is known to be an NP-complete problem, hence solving the long-
term optimization problem directly will be impractical even for a short opti-
mization horizon.

For this reason, we propose to split the problem in time windows. In this
way, for a period T, we can solve the problem by dividing such period T in
Nwindows = T/n, where n is the size of the window. This means that for a size
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n = 1 we will solve T windows, for n = 2 we will solve T/2 windows and so on.
Figure 4 shows the scheme of optimization in time windows. The input for the
fist window corresponds to initial conditions of the microgrid (e.g., the battery
could start with an initial charge of 100 W, and the fuel-cell generator in off
state ready for being activated).

Then, optimization for that window is done by using any of the algorithms
to solve the DCOP (e.g., AFB, DPOP, MB-DPOP and SynchSBB). The result
obtained in that window is used as input for the next window. The process is
repeated sequentially until a solution for the long-term period T is obtained.

Optimization 
using any 

DCOP 
algorithmInitial conditions for t=0

Fuel Cell
Battery Charge

Battery Discharge

Predictions for window 1

Wind power
Solar power

Load

Time Window 1

Conditions for t=window 2

Fuel Cell
Battery Charge

Battery Discharge

Predictions for window 2

Wind power
Solar power

Load
Optimization 

using any 
DCOP 

algorithm

Time Window 2

Until the 
whole period 

T is solved

Sucessive Time Windows

Fig. 4. Optimization using time windows.

One disadvantage of this approach is that the optimal solution cannot be
guaranteed and depends directly on the size of the window chosen. Small time
windows (e.g., size 1) are solved fast since the optimization is done without
knowledge of the future, keeping the information and variable relations low.
However, the quality of the solution may not be good enough because of the
lack of global vision for the conditions of the successive periods (e.g., wasting
all the resources in the current time without considering the demand for the
successive time).

It is expected that the quality of the solution improves by increasing the
size of the windows. However, as shown in Fig. 5, the number of variables grows
significantly with the size of the windows, hence resulting into an exponential
growth in the search space of the number of possible configuration to explore.
With this in mind, a trade-off between running time (i.e., small sizes) and quality
of the solution (i.e., large sizes) has to be considered when solving the long-term
optimization problem.

Heuristics and pre-processing strategies can be applied to reduce the con-
figuration search space significantly reducing the run time of the approach in
the average case. Nevertheless, in this paper the main objective is to propose a
decentralized architecture for the long-term optimization hence the use of such
heuristics is out of the scope and will be considered as future work.
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Agent 1
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Fig. 5. Model for different window size. Agents and variable relations with a window
size of: (a) 1, (b) 2 and (c) 3.

4 Results and Discussion

The results section is divided into three parts. First, in Sect. 4.1 we present
the particular scenario considered in this paper. In Sect. 4.2, we present opti-
mal results using the centralized approach from [7]. As previously stated, the
centralized approach is less flexible to scalability. However, the optimal solution
using such centralized approach is taken as a benchmark. Finally, in Sect. 4.3
we present the results obtained with our decentralized long-term optimization
approach.

4.1 Case Study

The reported results consider the Budapest Tech case study presented in [7]. This
scenario considers a microgrid with one wind generator (W), one solar generator
(S), one fuel cell generator (FC), and one battery. Energy costs are considered
constants for simplicity. Such costs and power limits are presented in Table 1.

Table 1. Costs of energy generation and production limits taken from [7].

Costs Production limits

CW = 0.4 W/h PlimW = 400 W

CS = 0.4 W/h PlimS = 150 W

CFC = 0.9 W/h PlimFC = 80 W

CBC = 0.4 W/h PlimStorage = 200 W

CBD = 0.6 W/h PlimBD = [0 − 50] W

CUE = 1.5 W/h PlimBC = [0 − 200] W

CEE = 0 W/h

Also, the optimization of on/off cycles was done for a period of 24 h (i.e.,
T = 24) in intervals of 1 h. The first 4 columns of Table 2 present the forecast
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of wind energy (PW ), solar power (PS), and the joint Load at each time t used
as an input of the optimization task. Also, we considered that the battery starts
fully charged with 100 W.

4.2 Centralized Optimal Solution

We solved the scheduling problem from a centralized perspective as an mixed-
integer linear programming (MILP) using Java and ILOG CPLEX. Table 2 shows
two different configurations of the controllable devices for the analyzed scenario.
Each column has the configuration of fuel cell power (PFC), battery charge
(PBC), battery discharge (PBD), undelivered energy (PUE), exceeded energy
(PEE), and the cost associated with such configuration at each time t. The total
cost of the solution for the long-term optimization in a period T = 24 h is also
reported.

We noticed that there were different configurations with the same global opti-
mal value. The problem of multiple configurations that satisfied all the restric-
tions with minimum cost is known as the degenerated problem [17]. Different
configurations were found varying the order in which the restrictions were con-
sidered, or the version of CPLEX solver.

The execution times were in the order of 70 mS with a standard deviation of
10 mS after 1000 experiments. We used a PC with Processor Intel(R) Core(TM)
i7-4770 @ 3.40 GHz and 16 GB of RAM.

4.3 Decentralized Long-Term Scheduling Results

In this section, we present the results of the proposed decentralized approach
for the scenario presented in Sect. 4.1. The optimization procedure was done for
different window sizes as explained in Sect. 3. The experiments were run 100
times each. We present the mean value and standard deviation (Std) of those
100 experiments for different DCOP algorithms (i.e., AFB, DPOP, MB-DPOP,
and SynchBB).

In general, in this model for an arbitrary window size (WS) and considering
3 agents (i.e., FC, BC, and BD), the number of variables is 3 ∗WS, the number
of constrains is 3 ∗WS + batterystatus ∗WS, and the domain size is FCWS

domain ∗
BCWS

domain ∗ BDWS
domain. It can be notice that the domain of each variable grows

exponentially along the window size, making the problem not tractable for large
window sizes.

Table 3 shows the results of various window sizes reporting the percent error
(i.e., the percent error between the long-term decentralized approach and the
optimal solution found with the centralized approach of Sect. 4.2), running time,
the total number of messages and the total size of messages. It can be seen that
DPOP, MB-DPOP, and SynchBB have the same performance. This is because
these three algorithms are exact. These three approaches provide an error of
3.64 % for a window size of 1. The error decreases when the window size increases
to 2. On the other hand, AFB algorithm found the optimal value for window
sizes 3, but the time required to reach the solution was approximately nine
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Table 2. Results obtained using Java-ILOG CPLEX. Two optimal configurations.

t PW PS Load PFC PBC PBD PUE PEE Cost PFC PBC PBD PUE PEE Cost

1 130 0 160 0 0 30 0 0 70 0 0 30 0 0 70

2 150 0 140 0 10 0 0 0 56 0 0 0 0 10 60

3 140 0 150 0 0 10 0 0 62 0 0 10 0 0 62

4 160 0 120 0 40 0 0 0 48 0 0 0 0 40 64

5 100 0 110 0 0 10 0 0 46 0 0 10 0 0 46

6 120 5 100 0 25 0 0 0 40 0 0 0 0 25 50

7 150 10 170 0 0 10 0 0 70 0 0 10 0 0 70

8 180 30 180 0 30 0 0 0 72 0 0 0 0 30 84

9 170 60 200 0 30 0 0 0 80 0 0 0 0 30 92

10 160 100 220 0 0 0 0 40 104 0 0 0 0 40 104

11 120 130 230 0 20 0 0 0 92 0 0 0 0 20 100

12 130 140 240 0 5 0 0 25 106 0 0 0 0 30 108

13 150 150 240 0 0 0 0 60 120 0 50 0 0 10 100

14 176 140 230 0 0 0 0 86 126.4 0 50 0 0 36 106.4

15 185 130 220 0 0 0 0 95 126 0 50 0 0 45 106

16 120 100 210 0 0 0 0 10 88 0 10 0 0 0 84

17 130 60 210 20 0 0 0 0 94 0 0 20 0 0 88

18 140 30 220 0 0 50 0 0 98 0 0 50 0 0 98

19 170 10 230 0 0 50 0 0 102 0 0 50 0 0 102

20 190 5 240 25 0 20 0 0 112.5 45 0 0 0 0 118.5

21 120 0 250 80 0 50 0 0 150 80 0 50 0 0 150

22 170 0 200 30 0 0 0 0 95 30 0 0 0 0 95

23 130 0 190 60 0 0 0 0 106 60 0 0 0 0 106

24 150 0 180 0 0 30 0 0 78 0 0 30 0 0 78

Total 2141.9 Total 2141.9

Table 3. Comparison of DCOP algorithms for long-term optimization. Running time
are shown in seconds. Messages size are shown in MegaBytes.

Percent error

Window AFB Std DPOP Std MB-DPOP Std SynchBB Std

Size 1 6.34% 0.0 3.64% 0.0 3.64% 0.0 3.64% 0.0

Size 2 8.30% 8.3 0.42% 0.0 0.42% 0.0 0.42% 0.0

Size 3 0% — — — — — — —

Time

Size 1 8.1 0.1413 17.3 0.2218 17.2 0.1941 12.3 0.2815

Size 2 2101.3 13.3349 176.6 0.5569 296.7 56.9301 2741.2 137.5269

Size 3 757754.7 — — — — — — —

Number of messages

Size 1 52785 5.5959 480 0.0 528 0.0 107076 0.0

Size 2 314767 394.3478 628 0.0 688 0.0 5492875 0.0

Size 3 185255337 — — — — — — —

Total size of messages

Size 1 2.6 3.87 ∗ 10−4 0.8 7.58 ∗ 10−6 0.8 6.75 ∗ 10−6 2.6 8.56 ∗ 10−6

Size 2 28 0.0396 2.8 8.35 ∗ 10−6 2.9 8.98 ∗ 10−6 154.7 0.0

Size 3 2351.7 — — — — — — —



A Decentralized IoT-Microgrid Approach 89

days (e.g., 757754 s). The other three algorithms did not finish the optimization
procedure after those nine days. Such behavior can be explained because a small
window size (i.e., 1 and 2) does not provide enough information to the agents,
limiting the capacity to find the global optimal solution in the long-term. With a
window size 3, the agents have sufficient information to find the optimal solution
in the long-term but the optimization procedure takes more time since there are
more variables to handle by the agents and the search space is too large. The
exponential increase in complexity can be also appreciated in the number and
size of messages exchanged by the agents in the optimization process.

The results also open research directions for the use of multi-agent systems
in the long-term optimization. For instance, it is clear the necessity of faster
procedures of search, allowing agents to handle large window sizes and improve
the quality of the solutions.

5 Conclusions and Future Work

In this paper, using the concepts of IoT and microgrids, we proposed a distrib-
uted architecture of agents for a decentralized management of smart devices. By
doing that, the problem of scheduling on/off cycles can be treated as a DCOP,
and different multi-agent algorithms can be used to find the solution. Also, know-
ing that multi-agent algorithms typically do not integrate temporality in their
frames due to the large size of variables and search space, we proposed the use of
optimization windows to solve the long-term optimization problem sequentially.

Results show that the distributed architecture and time window can be used
to find solutions comparable to the optimal for the long-term optimization. Small
size windows boost the optimization speed by losing information, limiting the
capability of DCOP algorithms. Large window sizes provide more information
leading even to the optimal solutions (i.e., with AFB and window size 3), but
the search space increases as well, making the optimization task complex. A
trade-off must be taken into account between efficiency (i.e., speed) and efficacy
(i.e., better solution) when the optimization is performed.

As further work, this paper opens new research directions in different areas.
Regarding the DCOP representation, one direction could be the formulation
of distributed problems considering time in a compact and natural way. The
creation of new restrictions would be needed to include time specifying where
and how the variables are connected through time. Another direction, regarding
the variable domain of a multi-agent system, will require the develop of new
techniques that help to reduce the domain size in challenging scenarios. A way
to attack such problem could be through heuristics that help algorithms to find
efficiently optimal or near-optimal solutions. Another option would be the imple-
mentation of pre-processing techniques to reduce the domain of variables before
the application of the optimization algorithms.
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