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Abstract. Many video games rely on a Domain Specific Language
(DSL) to implement particular features such as artificial intelligence or
time and synchronization primitives. Building a compiler for a DSL is
a time-consuming task, and adding new features to a DSL is hard due
to the low flexibility of the implementation choice. In this paper, we
introduce an alternative to hand-made implementations of compilers for
DSLs for game development: the Metacasanova metacompiler. We show
the advantages of this metacomplier in terms of simplicity of designing
and coding requirements, and in terms of performance of the resulting
code, whose efficiency is comparable with hand-made implementations
in commercial general purpose languages.

1 Introduction

In video games development it is often the case that Domain Specific languages
(DSL) are used, as they provide ad-hoc features that simplify the coding process
and yield to more concise and readable code when dealing with time manage-
ment, synchronization, and AI thanks to their little CPU and memory overhead
[1,8,16]. A typical synchronization problem arises when waiting for an event to
happen, for instance when the short distance of a player from a door enables him
to open it. These scenarios usually happen in a heavily concurrent system, where
possibly hundreds of entities perform such interactions within the same update
of the game. In order to tackle these problems, as a valuable alternative to the
use of Threads, Finite state machines, or Strategy patterns, developers make use
of Domain specific languages, like JASS [3], Unreal Script [14], or NWScript [2].

A first approach is implementing a DSL by building an interpreter within
the host language abstractions, such as monads in a functional programming
language [9,10,13]. Unfortunately the performance of an interpreted DSL built
with monads is not as high as that achieved by compiled code, as monads make
a large use of anonymous functions (or lambda expressions) which are often
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implemented with virtual method calls. Moreover functional languages are rarely
employed in game developments as games are highly stateful programs.

Another typical approach is to design a hard-coded compiler for the DSL.
This is a hard and time-consuming task, since a compiler is made of several
components which perform transformations from the source code into machine
code. The steps performed in this transformations are often the same, regardless
of the language for which the compiler is being implemented, and they are not
part of the creative aspect of language design [4]. This is why metacompliers
come into the scene, with the ability to treat programs as data [5].

In this paper we present a novel solution to ease the development of a compiler
for a game DSL by developing a metacompiler, called Metacasanova, producing
code that is both clear and efficient, especially designed for games development.
We show that, with this approach, the code to generate the compiler is 5 times
shorter than a hard-coded compiler.

In this work we briefly describe the most common techniques used to build
DSL’s for game and their drawbacks (Sect. 2). We then propose a novel approach
by introducing Metacasanova as a tool to develop a DSL (Sect. 3) and by re-
emplementing Casanova DSL (Sect. 4). We then evaluate the result in terms of
time performance and code length (Sect. 5) and draw the conclusion.

2 The Challenges of Building a Game DSL

In this section we introduce the general architecture of a game. We then present
an example of common timing and synchronization primitives used in DSL’s for
games and we show some techniques typically used to implement them. For each
technique we list the main drawbacks. Finally we present our solution to the
problem of developing a DSL for games.

2.1 Preliminaries

A game engine is usually made of several interoperating components. All the
components use a shared data structure, called game state, for their execution.
The two main components of a game are the logic engine, which defines how the
game state evolves during the game execution, and the graphics engine, which
draws the scene by reading the updated game state. These two components
are executed in lockstep within a function called game loop. The game loop is
executed indefinitely, updating the game state by calling the logic engine, and
drawing the scene by using the graphics engine. An iteration of the game loop is
called frame. Usually a game should run between 30 to 60 frames per second. This
requires both the graphics engine and the logic engine to be high-performance.
In this paper we will only take into account the performance of the logic engine,
as scripting drives the logic of the game loop.
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2.2 A Time and Synchronization Primitive

A common requirement in game DSL’s is a statement which allows to pause the
execution of a function for a specified amount of time or until a condition is met.
We will refer to these statements as wait and when. Such a behaviour can be
modelled using different techniques: (i) Threads are used in game engines to par-
allelize the tasks of the single components [15], like the logic engine, but they are
not suitable to implement those behaviours individually because of the memory
overhead: the default stack size is 1 MB [12], which would mean allocating 1 MB
per script in games with hundreds of thousands of entities running at least one
script. (ii) Finite State Machines are high performance but the code logic is lost
inside a switch structure, (iii) Strategy pattern uses polymorphism to represent
the language constructs but it is inefficient due to the extensive use of virtual-
ity, (iv) Monadic DSL’s use monads to model the waiting or synchronization
behaviour but extensively use virtuality as well due to lambda expressions, (v)
Compiled DSLs are the most common solution, are high performance, but they
require to implement a compiler or an interpreter (Table 1).

Table 1. Pros and cons of script implementation techniques

Technique Readability Performance Code length

Monadic DSL � ✗ �
Strategy pattern ✗ ✗ �
Finite state machines ✗ � ✗

Hard-coded compiler � � ✗

In this work we propose another development approach in building a game
DSL by using a metacompiler, a program which takes as input a language defi-
nition, a program written in that language, and generates executable code.

Given these considerations, we formulate the following problem statement:

PROBLEM STATEMENT: Given the formal definition of a game DSL our
goal is to automate, by using a metacompiler, the process of building a compiler
for that language in a (i) short (code lines), (ii) clear (code readability), and (iii)
efficient (time execution) way, with respect to a hand-made implementation.

3 The Metacasanova Metacompiler

In this section we show how wait and when can be expressed with type and
semantics rules. We show how these rules are implemented in a hard-coded com-
piler. We then introduce the idea of the metacompiler, explaining the advantage
over a hard-coded compiler. We then give an overview of how a program in
Metacasanova is written.
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3.1 Type and Semantics of Wait and When

Usually the type and semantics rules of language elements are represented by
rules that resemble those of logic models. Each rule is made of a set of premises
and a conclusion. The conclusion is true if all the premises are true. According
to this model, the type rules for wait and when are the following (E � x : T
means that x has type T in the environment E):

E � t : float

E � wait t : void

E � c : bool

E � when c : void

while their operational semantics is (with 〈expr〉 we mean “evaluating exp”,
with; a sequence of statements, and with dt the time difference between the
current frame and the previous):

〈t − dt > 0〉 ⇒ true

〈wait t; k dt〉 ⇒ 〈wait t − dt; k dt〉
〈t − dt > 0〉 ⇒ false

〈wait t; k dt〉 ⇒ 〈k dt〉
〈c〉 ⇒ true

〈when c; k dt〉 ⇒ 〈k dt〉

〈c〉 ⇒ false

〈when c; k dt〉 ⇒ 〈when c; k dt〉

3.2 Implementation in a Hard-Coded Compiler

The semantics rules of wait and when can be implemented into the type checker
module of a compiler written in a general purpose language. The rules are eval-
uated by means of a recursive function. In the case of a wait statement, we first
type check its argument. If the argument is a float then we return the node in
the type-checked Abstract Syntax Tree (AST) corresponding to the type-checked
wait. If the argument has another type then we raise an exception since the argu-
ment has an invalid type. In the case of a when statement we do the same, but
this time we check that the argument has boolean type. The code generation
part requires to output code according to the semantics rules defined above. In
this step the compiler can, for example, generate state machines described in
Sect. 2.2.

3.3 Motivation for Metacasanova

From the discussion above we observe that, regardless of the implemented lan-
guage, the process of type checking and implementing the operational semantics
in a hard-coded compiler, is repetitive. Indeed, building the type checker and
the code generator of a hard-coded compiler is a single, fixed translation of these
rules into the general purpose language that was chosen for the implementation.
This process can be summarized by the following behaviour: (i) find a rule which
conclusion matches the structure of the language we are analysing, (ii) recur-
sively evaluate all the premises in the same way, (iii) when we reach a rule with
no premises (a base case), we generate a result (which might be the type of the
structure we are evaluating or code that implements its operational semantics).
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Our goal is to take this process and automate it, starting only from the spec-
ifications which the hard-coded compiler would implement. In order to achieve
this we propose to use Metacasanova metacompiler. In what follows we show
how a Metacasanova program is defined.

3.4 General Overview

A Metacasanova program is made of a set of Data and Function definitions,
and a sequence of rules. A data definition specifies the constructor name of the
data type (used to construct the data type), its field types, and the type name
of the data. Optionally it is possible to specify a priority for the constructor of
the data type. For instance this is the definition of the sum of two arithmetic
expressions:

Data Expr ->"+" -> Expr : Expr Priority 500

A function definition is similar to a data definition but it also has a return type.
For instance the following is the evaluation function definition for the arithmetic
expression above:

Func "eval" -> Expr : Evaluator => Value

In Metacasanova it is also possible to define polymorphic data in the following
way:

Value is Expr

In this way we are saying that an atomic value is also an expression and we can
pass both a composite expression and an atomic value to the evaluation function
defined above.

A rule in Metacasanova, as explained above, may contain a sequence of func-
tion calls and clauses. In the following snippet we have the rule to evaluate the
sum of two floating point numbers ($ f is Data type for floating point values):

eval a => $f c

eval b => $f d

<<c + d>> => res

-----------------------------

eval (a + b) => $f res

Note that if one of the two expressions does not return a floating point value, then
the entire rule evaluation fails. The code between angular brackets specifies C#
code that can be embedded in Metacasanova, allowing to perform the arithmetic
operations with .NET operators. Metacasanova selects a rule by means of pattern
matching in order of declaration on the function arguments. This means that
both of the following rules will be valid candidates to evaluate the sum of two
expressions:

... ...

--------------- ---------------------

eval expr => res eval (a + b) => res

Finally the language supports expression bindings with the following syntax:
x := $f 5
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4 Case Study: A Language for Game Development

In this section we will briefly introduce the Casanova language, a domain specific
language for games. We then show a re-implementation, which we call Casanova
2.5, of the Casanova 2 language hard-coded compiler as an example of use of
Metacasanova.

4.1 The Casanova Language

Casanova 2.5 is a language oriented to video game development which is based
on Casanova 2 [1]. A program in Casanova is a tree of entities, where the root
is marked in a special way and called world. Each entity is similar to a class in
an object-oriented programming language: it has a constructor and some fields.
The fields do not have access modifiers because they are not directly modifiable
from the code except with a specific statement. Each entity also contains a list
of rules, that are methods that are ticked in order with a specific refresh rate
called dt. Each rule takes as input four elements: dt, this, which is a reference
to the current entity, world that is a reference to the world entity, and a subset
of entity fields called domain. A rule can only modify the fields contained in
the domain. The rules can be paused for a certain amount of seconds or until
a condition is met by using the wait statement. It is possible to modify the
values of the fields in the domain by using the yield statement which takes
as input a tuple of values to assign to the fields. When the yield statement
is executed the rule is paused until the next frame. Also the body of control
structures (if-then-else, while, for) is interruptible. In the following section
we show the implementation of Casanova 2.5 in Metacasanova.

4.2 Casanova 2.5

The memory in Casanova 2.5 is represented using three maps, where the key is
the variable/field name, and the value is the value stored in the variable/field.
The first dictionary represents the global memory (the fields of the world entity
or Game State), the second dictionary represents the current entity fields, and
the third the variable bindings local to each rule.

The core of the entity update is the tick function. This function evaluates
in order each rule in the entity by calling the evalRule function. This function
executes the body of the rule and returns a result depending on the set of
statements that has been evaluated. This result is used by tick to update the
memory and rebuild the rule body to be evaluated at the next frame. The result
of tick is a State containing the rules updated so far, and the updated entity
and global fields. Since a rule must be restarted after the whole body has been
evaluated, we need to store a list containing the original rules, which will be
restored when evaluation returns Done (see below). At each step the function
recursively calls itself by passing the remaining part of original rules (the rules
which body was not altered by the evaluation of the statements) and modified
rules (which body has been altered by the evaluation of the statements) to be
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Fig. 1. Casanova 2.5 rule evaluation

evaluated. The function stops when all the rules have been evaluated, and this
happens when both the original and the modified rule lists are empty.

Interruption is achieved by using Continuation passing style: the execution
of a sequence of statements is seen as a sequence of steps that returns the result
of the execution and the remaining code to be executed. Every time a statement
is executed we rebuild a new rule whose body contains the continuation which
will be evaluated next.

The possible results returned by the tick function are the following: (i)
Suspend contains a wait statement with the updated timer, the continuation,
and a data structure called Context which contains the updated local variables,
the entity fields, and the global fields. The function rebuilds a rule which body is
the sequence of statements contained by the Suspend data structure. (ii) Resume
is returned when the timer must resume after the last waited frame. In order
not to skip a frame we must still re-evaluate the rule at the next frame and
not immediately. In this case the argument of Resume is only the remaining
statements to be executed. (iii) Yield stops evaluation for one frame. We use
the continuation to rebuild the rule body. Memory is updated by evalRule. (iv)
Done stops the evaluation for one frame and rebuilds the original rule body by
taking it from the original rules list.

For brevity we write only the code for Suspend. A full implementation can
be found at [7]. You can see a schematic representation of the tick function in
Fig. 1.

evalRule (rule dom body k locals delta) fields globals => Suspend (s;cont) (Context newLocals newFields

newGlobals)

r := rule dom s cont newLocals dt

tick originals rs newFields newGlobals dt => State updatedRules updatedFields updatedGlobals

st := State (r:: updatedRules) updatedFields updatedGlobals

------------------------------------------------------

tick (original :: originals) (( rule dom body k locals delta)::rs) fields globals dt => st

The function evalRule calls evalStatement to evaluate the first statement
in the body of the rule passed as argument. The result of the evaluation of the
statement is processed in the following way: (i) if the result is Done, Suspend or
Resume then it is just returned to the caller function. We omit the code for this
case, since it is trivial; (ii) if the result is Atomic it means that the evaluated
statement was uninterruptible and the remaining statements of the rule must be
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re-evaluated immediately; (iii) if the result is Yield then the fields in the domain
are updated recursively in order and then the updated memory is encapsulated
in the Yield data structure and passed to the caller function.

evalStatement b k ctxt dt => Atomic z c

evalRule (rule dom z nop c dt) => res

-------------------------------

evalRule (rule dom b k ctxt dt) => res

evalStatement b k (Context locals fields globals) dt => Yield ks values context

updateFields dom values context => updatedContext

--------------------------------------------------------

evalRule (rule dom b k locals dt) fields globals => Yield ks values updatedContex

Note that, in case of a rule containing only atomic statements, we will even-
tually return Done after having recursively called evalStatement for all the
statements, and the rule will be paused for one frame.

The evalStatement function is used both to evaluate a single statement and
a sequence of statements. When evaluating a sequence of statements, the first
one is extracted. A continuation is built with the following statement and passed
to a recursive call to evalStatement which evaluates the extracted statement. If
the existing continuation is non-empty, then it is added before the current contin-
uation. If both the continuation and the body are empty (situation represented
by the nop operator) then it means the rule evaluation has been completed and
we return Done.

a != nop

--------------------- -----------------------

addStmt a b => a;b addStmt nop nop => nop

addStmt b k => cont

evalStatement a cont ctxt dt => res

------------------------------- -----------------------------------

evalStatement (a;b) k ctxt dt => res evalStatement nop nop ctxt dt => Done ctxt

We will now present, for brevity, only the evaluation of the wait and yield state-
ments. Both the evaluation of the control structures and the variable bindings
always return Atomic because they do not, by definition, pause the execution of
the rule.

The wait statement has two different evaluations, based on the rules defined
in Sect. 2: (i) the timer has elapsed: in this case we return Resume which contains
the code to execute after the wait statement, or (ii) the timer has not elapsed:
in this case we return Suspend which contains the wait statement with the
updated timer followed by the continuation.

<<t <= dt>> == false

----------------------------------

evalStatement (wait t) k ctxt dt => Suspend wait <<t - dt >>;k ctxt

<<t <= dt>> == true

----------------------------------

evalStatement (wait t) k ctxt dt => Resume k ctxt

The yield statement takes as argument a list of expressions whose values are
used to update the corresponding fields in the rule domain. The evaluation rule
recursively evaluates the expressions and stores them into a list passed as argu-
ment of the Yield result. Those arguments are used later by evalRule to update
the corresponding fields.
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eval expr ctxt => v

evalYield exprs ctxt => vs

------------------------------------------- ----------------------------

evalYield (expr :: exprs) ctxt => v :: vs evalYield nil ctxt => nil

5 Evaluation

In this section we provide an implementation of a patrol script for an entity in
a game. The sample is made up of an entity, representing a guard, and a couple
of checkpoints. The guard continuously moves between the two checkpoints. We
choose this sample because this is a typical behaviour implemented in several
games, where the user is able to set up a patrol route for a unit. We show the
comparison between the sample implemented in Casanova 2.5 and an equivalent
implementation in Python with respect to the running time. We then show a
comparison between the hard-coded compiler of Casanova 2.0 and the imple-
mentation of Casanova 2.5 in Metacasanova with respect to the code length.

5.1 Chosen Languages

We compared the running time of the sample in metacompiled Casanova with
an equivalent implementation in Python. This language was chosen based on its
use in game development: Python has been used extensively in several games
such as Civlization IV [6] or World in Conflict [11] because of the native support
for coroutines. We deliberately ignore C++ and C# implementations, although
they are widely used in the industry, because we knew in advance [1] that the

Table 2. Patrol sample evaluation

Casanova 2.5

Entity # Average update time (ms) Frame rate

100 0.00349 286.53

250 0.00911 109.77

500 0.01716 58.275

750 0.02597 38.506

1000 0.03527 28.353

Python

Entity # Average update time (ms) Frame rate

100 0.00132 756.37

250 0.00342 292.05

500 0.00678 147.54

750 0.01087 91.988

1000 0.01408 71.002
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Table 3. Meta-compiler vs standard compiler

Casanova 2.5 with Metacasanova

Module Code lines

Data structures and function definitions 40

Query Evaluation 16

While loop 4

For loop 5

If-then-else 4

When 4

Wait 6

Yield 10

Additional rules for Casanova program evaluation 40

Additional rules for basic expression evaluation 201

Total: 300

Casanova 2.0 compiler

Module Code lines

While loop 10

For-loop and query evaluation 44

If-Then-Else 15

When 11

Wait 24

Yield 29

Additional structures for rule evaluation 63

Structures for state machine generations 754

Code generation 530

Total: 1480

current version of the code generated by the meta-compiler would not match
the high performance of these languages: the main goal of this work is to reduce
the effort of writing a compiler for a DSL for games while having acceptable
performance.

5.2 Performance

The performance results are shown in Table 2. We see that the generated code
has performance on the same order as Python. This is mainly due to the fact
that the memory, in the metacompiled implementation of Casanova, is managed
through a map, and because of the virtuality of the implemented operators. Each
time Casanova accesses a field in an entity this must be looked up into the map.
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To this we add the complexity of dynamic lookups when we must deal with
polymorphic results into the rules.

From Table 3 we see that the implementation of Casanova 2.0 language in
Metacasanova is almost 5 times shorter in terms of lines of code than the previous
Casanova implementation in F#. We believe it is worthy noticing that structures
with complex behaviours, such as wait or when, require hundreds of lines of codes
with a standard approach (the code lines to define the behaviour of the structure
plus the support code to correctly generate the state machine), while in the meta-
compiler we just need tens of lines of codes to implement the same behaviour.
Moreover we want to point out that the previous Casanova compiler was written
in a functional programming language: these languages tend to be more synthetic
than imperative languages, so the difference with the same compiler implemented
in languages such as C/C++ might be even greater.

The readability with respect to the hard-coded compiler code is also
improved: we managed to implement the behaviour of synchronization and tim-
ing primitives almost imitating one to one the formal semantics of the language
definition (see the semantics rules in Sect. 3 and their implementation in Sect. 4).
In the hard-coded compiler implementation for Casanova 2.0 the semantics are
lost in the code for generating finite state machines.

6 Conclusion

In this work we proposed an alternative technique to implement a DSL for
games by using a metacompiler called Metacasanova. As a case study we re-
implemented the Casanova language, a DSL for game development, in Meta-
casanova. Our results show that the code required to re-implement Casanova in
Metacasanova is (i) shorter, and (ii) more readable with respect to the exist-
ing hard-coded compiler for the same language. Moreover we showed that the
language behaviour can be expressed in a way that directly mimics the formal
semantics definition of the language. Adding the layer of the meta-compiler to
the language affects the performance of the generated code so that we cannot
achieve the same performance as with the manual implementation. Despite this,
we managed to achieve performance similar to Python, a language typically used
as a scripting language to define the game logic in several commercial games.
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