
Alfons: A Mimetic Network Environment
Construction System

Shingo Yasuda(B), Ryosuke Miura, Satoshi Ohta, Yuuki Takano,
and Toshiyuki Miyachi

Hokuriku StarBED Technology Center, National Institute of Information
and Communications Technology, 2-12, Nomi, Ishikawa 923-1211, Japan

s-yasuda@nict.go.jp

http://starbed.nict.go.jp/en/

Abstract. Mimetic environments, which mimic actual networks includ-
ing personal computers, network assets, etc., are required for cyber range
or malware analysis. However, constructing various mimetic environ-
ments is costly and tedious because each environment has different net-
work assets. Thus, we propose a building block system for construct-
ing mimetic network environments for cyber security experiments. These
building blocks provides a fine-grained way to manage disk images and
files to reduce the construction cost. In this paper, we describe the design
and implementation of the building block system called Alfons.

Keywords: Network testbed · Cyber range environment · Testbed con-
struction system · Building block method

1 Introduction

The target of malware attacks is changing from an unspecified number of com-
puters to a particular company or individual. Such attacks are called “targeted
attacks.” Malware that is utilized in targeted attacks has become increasingly
sophisticated over time. Hence, the research and development of countermeasure
technology are urgently needed.

The analysis of malware utilizes not only a static analysis but also a dynamic
analysis because most malware that is captured at the first intrusion stage is a
dropper that obtains the next malware from a command and control server
(C&C server); therefore, it is not possible to ascertain its purpose without run-
ning the malware. Furthermore, some targeted-attack malware utilizes internal
(private) information such as a proxy address or an account ID/PASSWORD.
Such malware does not run as expected without these services or that configu-
ration in an analysis environment. Accordingly, the analysis environment should
be a mimetic environment with the same services and configuration that are
configured for the targeted domain network.

In addition, there is a shortage of security personnel in Japan. In order to
foster the knowledge of the security personnel, hands-on practice is effective.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

S. Guo et al. (Eds.): TridentCom 2016, LNICST 177, pp. 59–69, 2017.

DOI: 10.1007/978-3-319-49580-4 6



60 S. Yasuda et al.

Thus, we have cooperated with some event or security curricula that utilize
tools including SecCap [1], the Hardening Project [2], and so on. Such a cyber
range needs various network services and mimetic contents in their environments.
For example, these services and content include generic and domestic network
service applications within a targeted organization and their configurations and
business content such as office documents, mail, and so on. We have researched
and developed some tools for network testbed orchestration such as SpringOS [3].
These tools can construct a network environment for network software validation.
However, an operator must manually install these data when constructing an
event environment because SpringOS does not enough functionality for these
requirements. This work is costly and tedious.

To address this, we proposed a mimetic environment construction system
called “Alfons” for the dynamic analysis and cyber range [4]. Alfons allows for the
configuration of applications and has an installation mechanism for content to
reduce these costs. Alfons also can configure the applications without trace in the
instance; moreover, it also can insert the content files into instance without trace.
In this paper, we describe the design and implementation of Alfons. Moreover, we
describe a basic performance evaluation based on a conceptual implementation.

2 Related Work

Dynamic Analysis System for Malware: Cuckoo [5] is a dynamic analysis
tool for malware. Cuckoo builds a sandbox environment that can run an exe file
and utilizes a Kernel-based Virtual Machine (KVM) as virtualization technology.

Christopher Kruegel [6] proposed a dynamic analysis approach that utilizes
full virtualization. According to Kruegel, full virtualization such as KVM is
more suitable than para-virtualization techniques, because of its affinity for the
instruction level and the possibility of observation on Windows.

Miwa proposed a malware analysis platform called MIMI/MAT [7]. This is
a full automatic dynamic malware analysis platform that utilizes the network
domain, which has some virtual nodes including network services.

These tools usually utilize a clean node that is not used because they do not
have the functionality for customizing the internal data of the node.

Virtual Environment Configuration Tools: A cloud controller such as
OpenStack [8], VMWare vSphere [9] can create a network service node on
demand. SpringOS [3] can manage a physical node on StarBED. Moreover, Sprin-
gOS can control the network topology such as the VLAN connectivity between
physical nodes, even though other cloud orchestrators cannot. In addition, these
orchestrator tools do not have functions that imitate content and configurations.

Vagrant [10], Ansible [11] and Chef [12] are management tools that configure
a virtual environment. These tools enable users to configure the virtual node
including the configuration of applications, the installation of content, and so on
with recipes. A recipe is useful for customizing a virtual node on the basis of the
template node image. However, many recipes are necessary when an operator
creates many environments or a large environment with various nodes.



Alfons: A Mimetic Network Environment Construction System 61

Cyber Range Environment Construction: We have cooperated with some
events that partially apply these StarBED achievements [1,2]. ENCS,ICS-CERT,
and Boeing have other types of cyber ranges, such as Red TEAM - Blue
TEAM [13–15]. However, providing many various environments requires a high
cost if we utilize these tools or achievements.

3 Definition of Requirements

In this section, we discuss the functionality that the orchestrator tools should
have in each step of the network environment construction process. Current
network orchestrators have the functions listed in Table 1. Although it appears
that the functional coverage area is exhaustive, there is a lack of functionality
caused as the premise mismatch of the individual functions. In addition, there is
no tool that can transparently control the entire environment. We describe the
individual functional requirements in the following.

Table 1. Support coverage of orchestrator tools

Facility Network parameter Contents Virtual/Physical

management configuration installation node support

SpringOS © ©(Agent) ©(Agent) Physical

Cloud controller × © × Virtual

Vagrant © © × Virtual

Facility Management and Virtual/Physical Node Support: SpringOS
has a function related to network topology management that utilizes a bare
metal network switch configuration with a VLAN. A cloud controller such as
VMWare vSphere and Vagrant can configure the network connection on a hyper-
visor utilizing a bridge or virtual switch devices instead of not supporting the
management of these facilities. It is sufficient if one cyber range or dynamic
analysis environment can run on a hypervisor. However, some malware samples
have a function for sandbox detection, such as virtualization node detection [16].
There are some techniques for evading sandbox detection [17]; nevertheless, in
some cases, we should run such malware on a bare metal machine. Hence, the
orchestrator should support virtual and physical nodes; moreover, it should man-
age integrated with bare metal and virtual switch.

Network Parameter Configuration: All orchestrators can configure net-
work parameters such as the IP address of a node. Moreover, there are some
approaches that perform this configuration. SpringOS configures the network
parameters by utilizing an agent program. The agent program configures the
parameters on an experimental node. Owing to this, all experimental nodes
have a management network connection to manage the agents. It is a simple



62 S. Yasuda et al.

solution for generic network system software or application validation; however,
this is bad for malware analysis and a cyber range. This is because the manage-
ment connection has the risk of malware traffic leakage outside the environment;
moreover, a specific daemon program will interfere with the cyber range and
analysis. Vagrant needs a specific account in the construction node to configure
the nodes and is also subject to interference. Hence, the orchestrator tool should
configure or customize the experimental nodes without a trace.

Installation of Content: Some malware abuses the target internal proxy server
to connect to the outside. Other malware explores contents such as office doc-
uments or mail. Malware such as this will not run as expected without those
network services, configurations, and content in the environment. Hence, to ana-
lyze advanced malware, the software should have a function for configuring the
network parameters and a function for inserting content. In addition, these func-
tions should perform without a trace.

Environment Separation on a Network Testbed: In a generic network
testbed such as StarBED, the bare metal nodes have a management network
interface that can be found and used by an OS. In case of generic network
software validation, this is useful for managing the environment. On the other
hand, this has the risk of traffic leakage outside the environment for a malware
analysis or cyber range; moreover, it will be a feature of the analysis environment.
Thus, this feature will be the target of sandbox detection. Hence, the orchestrator
tool should have environment separation mechanism.

4 Design and Implementation of Alfons

In this section, we describe the design and implementation of “Alfons,” which
is a mimetic environment construction system for dynamic analysis and cyber
range construction. Alfons is assumed to operate on StarBED. Hence, Alfons
utilizes the API provided by SpringOS to control the bare metal switches, power
control, and OS installation of bare metal servers in StarBED. The other part
of the SpringOS API on Alfons is written in Ruby.

Fig. 1. Construction flow of Alfons



Alfons: A Mimetic Network Environment Construction System 63

Fig. 2. Sample logical composition file

4.1 Construction Flow

Alfons has two construction flows based on the CLI shown in Fig. 1. The first
is an interactive and sequential construction flow with a logical composition
file as seed information. We define the physical server resource as a “Nodebox”
in Alfons. Although all networks are defined on a VLAN (802.1q), it is man-
aged by the logical resource names in Alfons because the dynamic analysis and
cyber range environments are usually created iteratively. On the other hand,
the physical resources that can be used are not always the same in an experi-
mental environment such as StarBED. Hence, in order to obtain environmental
portability, it is necessary to separate the logical resource name and the physical
resources. A sample of the logical composition is shown in Fig. 2. The logical
composition file has adopted the YAML format. This logical composition file
defines two Nodeboxes and two VLANs; moreover, two VLANs are connected to
each Nodebox as an untagged or tagged VLAN.

First, a user writes and registers a logical composition file to Alfons in this
flow. The user then defines the physical resource id, VLAN id to a Nodebox, and
the VLANs name by a CLI command in the next step. Next, the user creates
an experimental node that utilizes template disk images with content files. In
addition, Alfons can save the environment as an environment composition file
after the construction of an experimental environment.

The other construction flow is a fully automatic construction flow with an
environmental composition file. A sample of the environmental composition file
is shown in Fig. 3, which adopts the XML format. This file is created by Alfons
as result of an interactive construction or the user who creates it. In addition,
this file includes the physical resource and logical resource binding. Hence, the
user can easily change a physical resource to construct a copy environment.

4.2 Instance Creation

In Alfons, a physical or virtual node in the environment is called an “instance”;
moreover, the template instance dataset is called a “component.” Basically, all
modern OSs are collection of files on a file system. In other words, an original
node is a clean OS disk image with uniquely polluted data files. Hence, we can
create the original node image by inserting specified files into the template node
image. Alfons adopts this method. A component is preliminarily registered and
shared in Alfons by an operator. Alfons creates an instance with its component
and the specified files that identify the instance. We call this creation method
a “building block system.” Figure 4 shows an image of this instance creation



64 S. Yasuda et al.

Fig. 3. Sample environmental composition file

Fig. 4. Instance creation by a building block system

method. A user creates an instance with identifying information such as the
hostname, IP address, MAC address, bound VLAN name, and inserted content
after determining the component as a base node image. For example, a user can
create an FTP service instance with the specified proftpd.conf file if Alfons has
the CentOS component that includes the ProFTPD package. To do this, Alfons
customizes the instance image file on the Alfons server through a file system
mount before transporting the instance image file to a Nodebox; therefore, Alfons
can customize without leaving unwanted traces.

4.3 Configuration File Generation

Alfons has the functionality for simple file insertion as well as file string replace-
ment of inserted files. With this function, a user can replace the strings in the
configuration files of a component. There are two types of replacement mech-
anisms. The first mechanism is simple replacement utilizing a format such as
STRING . For example, this mechanism is utilized for hostname replacement.

The user must define the hostname when creating an instance. If a compo-
nent has configuration files including the replace string “ hostname ,” Alfons
replaces this when customizing the component image, etc. /etc/hosts,...

The other mechanism is replacement with a specific script. This mechanism
utilizes “ (SCRIPT,ARG) ” as a replacement string. “SCRIPT” is a script
name that is registered with a component by an operator. The operator can
register any language script if it can run on the Alfons server, e.g., a shell script,



Alfons: A Mimetic Network Environment Construction System 65

Perl, Python, and Ruby. The next column of the script name is the argument,
which can be specified as zero or with more arguments delimited by commas.
Nesting descriptions are also possible with these formats. For these reasons, it
is also possible to define the processing results through multiple stages.

They are very simple instance customization solutions for generating distinc-
tive instance from a component. Ansible or Vagrant and SpringOS can customize
the instance images by a specific user account or specific agent program with a
specific language such as a recipe. In contrast, these solutions are combination
of general regular expressions and scripting language; additionally, they do not
need a specific user account or an agent program. This solution should be easily
understood by the user.

4.4 Physical and Virtual Node Support

The user can choose either a virtual node instance or a physical node instance
based on a component. Thus, the user can construct an optimum environment for
analysis or cyber range depending on the type of malware. Alfons automatically
installs a hypervisor into a Nodebox if the instance type is a virtual node. In
addition, Alfons directly installs an instance into the Nodebox if the operator
chooses a physical node as the type of instance. Altogether, the operator does
not need to manage the installation of the hypervisor. The current version of
Alfons supports the Linux KVM and ESXi as a hypervisor. In addition, Alfons
controls the bridge devices in a hypervisor to attach physical network devices to
instance tap devices since SpringOS can control only bare metal switches.

5 Evaluation of Conceptual Implementation

In this section, we describe the evaluation of a conceptual implementation uti-
lizing a small cyber-range environment.

5.1 Evaluation Environment

We defined a cyber-range environment that assumes the CTF shown in Fig. 5
for evaluation. This environment has five Nodeboxes in total, including a global
router Nodebox and four team Nodeboxes. The team environment has three
internal segments: the client, internal-server, and DMZ segments. There are five
instances in total for each segment: the firewall, Windows 7 client, file server,
database, and DNS/mail instances. Basically, most of the configuration is the
same in each team environment, but the IP tables (NAT policy) and global IP
address of the firewall instance and the BIND/Postfix/Dovecot configuration of
the DNS/mail instance are different. We utilize the six servers listed in Table 2
for this evaluation. These servers connect to a bare metal switch. Only the Alfons
server has flash disk storage because the Alfons server copies the component disk
image to customize it. The servers for the Nodebox have only HDD drives.



66 S. Yasuda et al.

Fig. 5. Network topology for evaluation

Table 2. Hardware specifications of the evaluation environment

Server CPU Memory DISK Network IF

Alfons server Intel Xeon R©E5-2620
v3 x 2

64 GB FusionIO SX300 x 2 10 Gbps

Nodebox
server

Intel Xeon R©X5670 x 2 48 GB SATA HDD x 2 1 Gbps

Experimental
switch

D-Link R©DGS-3427 - - -

5.2 Performance Evaluation

We constructed the environment ten times for evaluation. In this evaluation, all
instances are virtual nodes utilizing the Ubuntu 14.04 Linux KVM as a hyper-
visor. Table 3 lists the processing times and disk image sizes. Alfons installs the
hypervisor only once when creating a new Nodebox. In addition, the current
version of Alfons runs all processes sequentially. Alfons took about 1624 s to
construct a TEAM environment and about 6754 s to finish the entire construc-
tion. Alfons generated the configuration files (BIND files, Postfix files, and so
on) on the basis of the template configuration files.

We measured the relationship between the inserted data size and the process-
ing time. In this experiment, we created the firewall instance utilized in the pre-
vious experiment with five dummy datas which is different data sizes. Figure 6
shows the results. The results show that the time required for the process depends
on the template disk image size and the size of the inserted content.

5.3 System Evaluation

Table 4 summarizes a system evaluation based on a comparison of the concep-
tual implementation of Alfons and recent tools. Alfons can control the physical
facilities and can create a virtual instance on a hypervisor. All of the instances
in the environment could communicate with each other; moreover, all of the
defined network services run as expected. In addition, all instances, other than



Alfons: A Mimetic Network Environment Construction System 67

Table 3. Average processing times of the evaluation environment

Section Disk image Min [s] Quartile Median [s] Quartile Max [s]

size [MB] point [s] point [s]

HV 10240 546.5 569.0 577.6 587.7 618.2

gr 1334 92.9 94.1 95.4 97.4 103.0

gw 1387 71.4 75.9 80.6 84.5 99.4

dm 3303 122.6 132.9 145.5 154.8 182.6

fs 4989 147.7 162.5 173.1 195.8 222.8

db 4699 133.8 152.9 161.2 181.3 213.8

win7 9987 273.0 306.1 332.5 373.8 479.4

TEAM - 1572.6 1603.8 1624.2 1639.1 1675.1

TOTAL - 6507.6 6565.1 6754.3 6789.4 7020.1

Fig. 6. Processing time for each size of inserted data content

Table 4. Support coverage of Alfons and orchestrator tools

Facility Network parameter Content Virtual/Physical

management configuration installation node support

Alfons © ©(Local) ©(Local) Physical/Virtual

SpringOS © ©(Agent) ©(Agent) Physical

Cloud controller × © × Virtual

Vagrant © © × Virtual

Global Router, do not have any management network interfaces. The user can
control the Windows client instance with a VNC on the hypervisor. Thus, this
evaluation environment is isolated from other testbed facilities. Alfons can con-
figure the ownership and permission of inserted files without a special account
in the instance; therefore, there is no trace of the work in the instances.



68 S. Yasuda et al.

6 Conclusion

In this paper, we described the requirements for the dynamic analysis of malware
and a cyber range environment construction system; moreover, we proposed the
building block system “Alfons” for seamless environment construction. Alfons
supports both virtual and physical nodes, and it can manage integrated with bare
metal and virtual bridge management. Alfons also can configure the applications
without trace in the instance; moreover, it also can insert the content files into
instance without trace.

In addition, we evaluated a conceptual implementation of Alfons that uti-
lized a sample environment assumed to be a cyber range. We constructed this
environment consisting of 21 instances on five Nodebox servers in about 6754 s.
The instances in the environment have no trace of processing such as a specific
account and log; moreover, the instances have no management network connec-
tion, i.e., its cyber range environment was isolated. These results indicate that
our proposed system is effective.

However, since this case is still insufficient, it is necessary to obtain feedback
from the findings with future utilization. In addition, methods for increasing the
speed of Alfons will be considered, such as simultaneous deployment to multiple
Nodeboxes, because the current version of Alfons runs all processes sequentially.
We are going to continue research and development for further optimization.

Acknowledgment. The authors thank S. Miwa, Ph.D. from the National Institute
of Information and Communications Technology and T. Inoue, Ph.D. from the Japan
Advanced Institute of Science and Technology for their insightful comments and sug-
gestions. The authors thank H. Nakai and K. Akashi for their generous support. The
authors thank the Hardening Project for giving us the opportunity to practice with
the system.

References

1. SecCap: Education network for practical information technologies-security-(only
available in japanese) (2015). https://www.seccap.jp

2. Hardening 10 APAC: A security competition like no other (2014). http://wasforum.
jp/hardening-project/hardening-10-apac-en/

3. Miyachi, T., Nakagawa, T., Chinen, K.i., Miwa, S., Shinoda, Y.: StarBED and
SpringOS architectures and their performance. In: TRIDENTCOM, vol. 90, pp.
43–58 (2011)

4. Yasuda, S., Miura, R., Ota, S., Takano, Y., Miyachi, T.: Building block type con-
struction system for mimetic environment (only available in japanese). In: Pro-
ceedings of Internet Conference 2015 JSSST, vol. 77, pp. 69–78, October 2015

5. Cuckoo Sandbox (2015). http://www.cuckoosandbox.org/
6. Kruegel, C., Emulation, F.S.: Achieving successful automated dynamic analysis of

evasive malware. In: Black Hat (2014)

https://www.seccap.jp
http://wasforum.jp/hardening-project/hardening-10-apac-en/
http://wasforum.jp/hardening-project/hardening-10-apac-en/
http://www.cuckoosandbox.org/


Alfons: A Mimetic Network Environment Construction System 69

7. Miwa, S., Miyachi, T., Eto, M., Yoshizumi, M., Shinoda, Y.: Design and implemen-
tation of an isolated sandbox with mimetic internet used to analyze malwares. In:
Benzel, T.V., Kesidis, G. (eds.) DETER Community Workshop on Cyber Security
Experimentation and Test 2007, Boston, Ma, USA, 6–7 August 2007. USENIX
Association (2007)

8. OpenStack (2015). https://www.openstack.org/
9. VMWare vSphere (2015). http://www.vmware.com/products/vi/

10. Vagrant (2015). https://www.vagrantup.com
11. Ansible (2015). http://www.ansible.com/home
12. chef (2015). https://www.chef.io
13. ENCS: European network for cyber security (2015). https://www.encs.eu
14. ICS-CERT: The industrial control systems cyber emergency response team (2015).

https://ics-cert.us-cert.gov
15. CRIAB. http://www.boeing.com/defense/cybersecurity-information-management/
16. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting Environment-

Sensitive Malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23644-0 18

17. Detecting Malware and Sandbox Evasion Techniques (2015). https://www.
sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-
techniques-36667

https://www.openstack.org/
http://www.vmware.com/products/vi/
https://www.vagrantup.com
http://www.ansible.com/home
https://www.chef.io
https://www.encs.eu
https://ics-cert.us-cert.gov
http://www.boeing.com/defense/cybersecurity-information-management/
http://dx.doi.org/10.1007/978-3-642-23644-0_18
http://dx.doi.org/10.1007/978-3-642-23644-0_18
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667

	Alfons: A Mimetic Network Environment Construction System
	1 Introduction
	2 Related Work
	3 Definition of Requirements
	4 Design and Implementation of Alfons
	4.1 Construction Flow
	4.2 Instance Creation
	4.3 Configuration File Generation
	4.4 Physical and Virtual Node Support

	5 Evaluation of Conceptual Implementation
	5.1 Evaluation Environment
	5.2 Performance Evaluation
	5.3 System Evaluation

	6 Conclusion
	References


