
Towards an Experimental LegoLand:
Slice Modification and Recovery

in ExoGENI Testbed

Yufeng Xin1(B), Ilya Baldin1, Anirban Mandal1, Paul Ruth1, and Jeff Chase2

1 RENCI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
yxin@renci.org

2 Department of Computer Science, Duke University, Durham, NC 27708, USA

Abstract. This paper describes advanced capabilities that were
deployed recently in the ExoGENI testbed to offer increased flexibil-
ity in provisioning, modifying, and recovering the topologies and the
configuration settings of the virtual systems, or slices, in which exper-
iments are run. Using the analogy of building complex structures with
LEGO blocks, we envision an environment in which users arbitrarily
scale out, scale in, scale up, and scale down their topologies using vari-
ous modular constructs of compute, storage, and network resources. Por-
tions of topologies can be shut down and brought back up to support
resiliency, repeatability, migration, and other needs of the control soft-
ware or application. Distributed applications running inside of slices can
require programmatic control over the evolution of the topology as the
execution progresses. The introduced capabilities, slice modification and
slice recovery, are used either with the user GUI or through the program-
mable APIs. These new features expand the range and ease of options
available to cloud-control software and to application developers as they
test their designs at scale.

1 Introduction

The work that we present here endows researchers in networking and in distrib-
uted computing with flexible, efficient control over the scaling and configuration
of network topologies in real time. It represents a substantive improvement in
their ability to test the performance, scalability, and resiliency of the systems
under investigation. Our work equips networked applications that are deployed
inside and between data centers and clouds to operate more nimbly and robustly,
optimizing available compute, storage, and networking resources. These types of
requirements have been studied extensively as distributed application technolo-
gies and their uses have evolved [6,9,10].

Modern testbeds in networking and in distributed systems support virtual
machines (VM) and other virtualization mechanisms [12,13] not only to improve
usability and configurability but also to optimize resource utilization. Thus, they

This work is supported by the US National Science Foundation through the GENI
initiative and NSF awards ACI-1245926, ACI-1440715, and CNS-1329745.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

S. Guo et al. (Eds.): TridentCom 2016, LNICST 177, pp. 35–45, 2017.

DOI: 10.1007/978-3-319-49580-4 4

36 Y. Xin et al.

resemble the public clouds deployed by Amazon, RackSpace, and other com-
mercial providers. GENI, the federation of multiple testbeds, is consequently
evolving into a cloud-based infrastructure-as-a-service (IaaS) system suited to
real-world deployments of innovative distributed services and Future-Internet
architectures as well as to experimentation [5].

Individual virtual machines provide a great deal of flexibility in configuring
the performance attributes of individual compute nodes [14]. Allowing general-
ized manipulation of the topology interconnecting them, however, remains an
open challenge. The only exceptions are a few typical data-intensive or web-
service applications within a cloud in which the size of the worker server pool is
allowed to be adjusted [10]. The challenge is greater in the case of a large-scale
federated testbed system such as GENI, which includes multiple cloud sites
connected by multi-domain networks. Each topology-modification action may
involve modifying, provisioning, or releasing resources across multiple providers
and may require provisioning of inter-site networking.

GENI creates virtual topologies for users. Each topology is called a slice.
Individually configurable indivisible elements of slice topology are called slivers.
Slivers can be individual virtual machines, bare-metal nodes, or links acquired
from transit providers. Throughout this paper, we will use the term “slice”;
however, instead of “sliver”, we prefer reservation because we always associate
a start and an end time with each sliver.

In this paper, we address four types of topology-scaling, defined as follows:
(1) Scale up: increasing the size of a virtual cluster by adding more homoge-
neous nodes, or by raising the bandwidth of the network link in a slice; (2) Scale
down: decreasing the size of a virtual cluster by removing nodes, or by reduc-
ing the bandwidth of reserved network links in a slice; (3) Scale out: adding
new links, nodes, clusters, or third-party resources and linking them to existing
reservations; (4) Scale in: deleting existing links, nodes, clusters, or third-party
resources. We further define slice modification to be some form of topology scaling
associated with reservation term extension. Reservation extension is required to
ensure that the topology continues to exist after slice modification and to pre-
vent older reservations from expiring. Slice recovery allows the system to stop,
and then to restart, a slice while preserving its topology and resource accounting
in the IaaS control system.

We focus on the implementation of generalized slice-modification capabilities
in the ExoGENI testbed [3,7]. Since its inception seven years ago, ExoGENI has
become an ambitious multi-domain IaaS system that has evolved well beyond the
original design goal of a built-to-order virtual networking testbed. It is powered
by a suite of information models, topology abstractions, and embedding algo-
rithms, with resource-orchestration and -control software. It includes experimen-
tal tools that orchestrate a federation of independent cloud sites and networking
providers through their native IaaS interfaces [1,3]. Due to the architectural flex-
ibility of the ORCA [8,11] control software, ExoGENI continues to evolve. It now
possesses the comprehensive generalized topology-scaling capabilities described
here, which distinguish it from other similar testbeds.

Towards an Experimental LegoLand 37

The remainder of the paper presents our major contributions in three parts.
In Sect. 2, we review the key components of ORCA, including system informa-
tion models, topology abstraction, inter-domain orchestration, and end-to-end
provisioning. We also describe the details of slice modification and recovery func-
tions. In Sect. 3, we demonstrate several use cases that benefit from these new
capabilities. Section 4 briefly states conclusions and ongoing work.

2 Slice Modification and Control Framework Design

In this section, we first motivate the slice-topology scaling with two typical
use cases in cloud application and networking experiments. We then explain
the technical challenges and the software enhancements that we added to the
ORCA control framework to enable the slice modification. Due to the modu-
lar nature and flexible resource-description mechanisms of ORCA, most of the
modifications were done outside of the ORCA core code, which handles such
basic functions as agent communication, state maintenance, and recovery. We
did modify the ORCA state machines, however, to support the sliver-modify
cycle, which is discussed later in this section.

2.1 Motivating Examples

Figure 1 shows two types of virtual clusters that are commonly requested by big-
data or tiered web-service applications. A virtual cluster request abstraction can
be represented as N (virtual) nodes connecting to a virtual root R via links with
bandwidth B as shown in Fig. 1(a). A more general representation is a virtual
oversubscribed cluster [4] as shown in Fig. 1(c). Here, N VMs are grouped in a
two-layered structure, where Vi is the virtual switch for connecting VMs in the
group Ci with intra-group and inter-group bandwidths B

′
i and Bi, respectively.

A cluster is expressed by NodeGroup abstraction in ExoGENI, which specifies a
group of VMs of identical configuration and connectivity.

The sizes and locations of the node groups are the most important scaling
factors affecting the performance. A simple virtual cluster can be scaled up by

Fig. 1. Virtual cluster topology scaling Fig. 2. General topology scaling

38 Y. Xin et al.

adding more nodes, or scaled down by deleting the existing nodes, as shown
in Fig. 1(b). In this case, the entire cluster is embedded in a single cloud site.
The modification action reduces to attaching/deleting the NICs of the newly
added/deleted VMs to/from the broadcast link, which is a VLAN that is instan-
tiated in the site switch. The case becomes much more complex when an over-
subscribed virtual cluster consists of multiple sub-clusters that are embedded in
different cloud sites. As shown in Fig. 1(d), we call this type of modification a
scale-out, since the new sub-clusters are added from other sites. This mechanism
is enabled by an Exchange Domain [15] deployed in ExoGENI. It can create
multi-site broadcast domains to support large-scale distributed virtual clusters.

Figure 2 shows a sequence of modifications in a generic slice. The initial
request is for a simple bus topology of three network nodes, as shown in Fig. 2(a).
The topology is created in the testbed on an inter-site path (Link0 in Path0)
and on an intra-site path (Link1 in Path1); the manifest topology is shown in
Fig. 2(b). Next, modifications are made to the virtual topology, as shown in
Fig. 2(c). In the example, the system deleted both Path0 and Path1 (scale-in),
added a storage device to Node0, created a new link between Node2 and Node1,
and created another new path between Node0 and Node1 via a new node, Node3
(e.g., a router) (scale-out). The resulting topology is depicted in Fig. 2(d).

In addition to the basic topology-scaling performance, we can easily see the
value of topology modification in other important system studies. For example,
the option of adding or deleting arbitrary links in the virtual topology would be
very useful in studying fault tolerance or congestion-avoidance performance. Link
and node deletion can emulate network link or node failures and can be used to
exercise backup and rerouting strategies. The ability to add new components to
the topology, especially new types of resources (e.g., storage nodes on demand),
would yield significant benefits for distributed or big-data system designs.

2.2 Control Framework Support

We implemented slice modification in the ORCA control framework using exten-
sions to resource-control policies and substrate drivers, all pluggable components
in ORCA architecture. These modifications consisted of two parts. First, there
were modifications to ORCA core-state machines to support a variety of atomic
reservation modify operations. Examples of these include inserting new SSH keys
into a compute node, adding or removing network interfaces from a compute
node, and changing the bandwidth of a link. Second, we modified the control
plugins to help orchestrate slice modify operations as sequenced sets of operations
that created new reservations, removed or modified existing ones. This function
required reservation modifications to accommodate stitching or unstitching parts
of the slice. For instance, linking a new node to an existing node in the topology
(i.e., a scale-out) requires creating new link and node reservations as well as
modifying the reservation of the existing node to add a new network interface
attaching it to the new link, as shown in Fig. 2(d).

In this paper, we focus on the enhancements to ORCA that were created to
support slice modification. The sequencing of provisioning operations in ORCA

Towards an Experimental LegoLand 39

is part of its core functionality and is described more fully in [2,3], while further
details of ExoGENI architecture and ORCA implementation can be found in [1]
and on the project website [7].

Fig. 3. ORCA information model and slice life-
cycle

A critical design principle
in ORCA is that of main-
taining provider autonomy, in
which substrate providers adver-
tise topology information and
resource counts at the desired
level of granularity and com-
mitment. This feature allows
providers to decide whether to
under - or oversubscribe their
resources and enables them to
maintain the privacy of their
internal topologies. The abstract
representations of provider topol-
ogy and resource levels are dele-
gated to a broker in the form of
resource pools of different types
(VLAN, VM, etc.) with associated constraints on total bandwidth, core counts,
available memory, and storage space.

An ORCA user agent called controller queries the broker in real time
for available resources, then constructs the inter-site topology from individual
abstractions. Next, it embeds the user topology request and generates individ-
ual resource reservations for different aggregate managers (AMs) representing
resource providers. These reservations are sent to the AMs to be redeemed for
actual resources, which are provisioned by the respective AMs.

Each AM has its own resource-control policy to account for available
resources. Each uses customized drivers to invoke APIs, which then provision
the resources, e.g., OpenStack nova for VM, or AL2S OSCARS for the dynamic
circuits over Internet2. The operation of ORCA actors is depicted in Fig. 3, with
red boxes showing the enhancements that were added to support the generalized
slice-modification capability.

Reservation Modify Support. The core of ORCA consists of three types of
distributed, autonomous ORCA actors that interact with each other to main-
tain reservation states. Each reservation passes through different states using
well defined state machine actions for each actor. Reservations are associated
with dictionaries of properties that describe their configurations according to
the type of each reservation. Providing support for slice modification required
that we first enable changes to slivers/reservations, allowing the controller logic
to combine such modifications with other reservation operations. We extended
the internal reservation-state machine to support new states for reservations
and introduced new inter-actor calls to communicate modification actions.

40 Y. Xin et al.

Fig. 4. Extended ORCA state machine.

Modifying a reservation involves updating the dictionary of properties and invok-
ing a substrate-update task to implement those changes. For example, adding
a new network interface involves adding new properties that specify, e.g., its
MAC and IP addresses along with the VLAN tag to which it attaches. Then, a
substrate update task can be invoked, e.g., on OpenStack, to equip an existing
VM with a new interface that possesses the desired properties.

The new reservation states for each actor were designed to support progres-
sive modification of stored reservation properties, and had to be reconciled with
the existing state transitions. The state machine transitions on each of the three
types of ORCA actors are shown in Fig. 4. The area of the figure that is shaded
in green shows the extra states and transitions that were introduced to support
modification of reservations. We added a new “pending” reservation state called
ModifyingLease, shown as (M) in the figure. We also extended the ORCA man-
agement API, i.e., the API used by external entities to interface with the ORCA
core, to support calls from the controller for reservation modifications.

Stateful Slice Control. Conceptually, a slice is a resource container. It holds
a set of resource reservations (slivers) that are granted by the providers for a
specific term. We implemented the ORCA controller to maintain the current
state of the slice, including individual reservations and their respective topolo-
gies. The controller also sequences the generation of new reservations, removes
old reservations, and modifies existing reservations, all of which are steps in a
single slice modification. Each slice-modification request consists of a subgraph
that is either added or removed from the existing topology graph. Based on
this slice-modification request, the controller computes sets of reservations to be
added and to be removed, along with modification operations for existing affected
reservations. It sequences them properly using dependency tracking and submits
them to the ORCA core for execution. The standard ORCA core mechanisms
communicate among the various relevant actors, making sure that resources are
instantiated, deleted, or modified to reflect the new topology of the slice.

Towards an Experimental LegoLand 41

Slice-modification requests are not idempotent. They are always based on
the latest slice-manifest document, reflecting the latest topology. Elements of
the slice have unique URL names in the manifest. To stitch new elements of the
slice these names are included in slice-modification requests as reference points
to be used in the attachment of new reservations to existing ones and in the
removal of existing reservations. Replaying a scale-up/out modification request
results in the generation of duplicate subgraphs that are added to the slice.

The dependency-tracking mechanism builds on previously described work [2].
To support slice modifications, we extended this mechanism to include a new
type of dependency. It is used in the initiation of reservation modifications only
after prerequisites have been fulfilled, e.g., after creating or removing a reser-
vation. The prerequisites may provide information that is needed to invoke the
reservation modification, such as the tag of a VLAN from which a node needs to
be disconnected because the associated link was removed. Originally, the track-
ing of dependencies supported only the sequencing of new reservation events.

Persistent Resource Models. ORCA is a complex distributed system with
many actors. Thus, it can experience a variety of failure modes. Recovery of state
is critical; the affected portion of the system must be able to resume its state
correctly and to proceed with its operation after a failure. ORCA recovery is
based on two different approaches, i.e., recovery of slice - or substrate topologies
and recovery of reservation states in other actors such as brokers and AMs. The
topology information models in ORCA are represented in Semantic Web RDF
and OWL models, which are implemented using the popular RDF library Jena.
Jena has a TDB component for persistent storage and query from the disk. We
implemented our slice-recovery function by using TDB to save all the substrate
information models at each actor and the slice models in the controller. When an
actor crashes or is shut down and restarted, it can invoke the recovery function to
restore its models from the latest committed state in the TDB store. The recov-
ery function automatically reconciles the actor’s information with the available
resource information acquired from the ORCA core, which has its own recov-
ery capability based on storing resource-accounting information in a relational
database. Once the recovery is complete, the actor resumes its operation.

2.3 Aggregate Manager Control

ExoGENI AMs control the physical substrate and instantiate resources requested
by the user via a controller. Addition and removal of network links require,
respectively, addition and removal of network interfaces to existing virtual
machines. This modification is handled by the AM.

Most compute aggregates in ExoGENI are individual hybrid Open-
Stack/xCAT clouds. ExoGENI uses a custom plugin to OpenStack networking
that supports dynamic addition and removal of Layer-2 networks as well as of
the corresponding network interfaces on existing virtual machines.

42 Y. Xin et al.

2.4 User Tool and API

The Flukes GUI and the NDLLIB library are the two user interfaces to Exo-
GENI that support the new slice-modification features. The Flukes GUI has been
enhanced to support the different types of scaling behaviors described earlier.

The NDLLIB library provides a programmable interface to ExoGENI pro-
viding procedural interface to the controller API. The library consists of Java
classes and methods that simplify the generation and parsing of NDL requests
and manifests. The library uses an abstraction of Java objects to model slices and
resources within slice topologies, e.g., compute nodes, network links, and storage
nodes. Users can add, remove, and modify resources in this slice model. Then,
they can programmatically generate a NDL request and submit to ExoGENI
controller to instantiate new resources or to change existing resources.

3 Use Cases and Evaluation

Today, the ExoGENI testbed has some twenty cloud sites across the world, the
highest concentration of which is located in the U.S. Dynamic circuits must be
provisioned over, e.g., AL2S, the Exchange Domain, and regional networks to
provision slices over multiple sites. With this in mind, we first studied the scaling
performance of ExoGENI in provisioning virtual clusters scaling out to various
sites. Figure 5 shows a screenshot of the user interface in Flukes from this work.
The background view is the request for five sub-clusters of size 12 at different
sites, expressed in the simple virtual-cluster (VC) abstraction using the node
group. The front view is the manifest that shows the result, which is a slice
with the instantiated VMs interconnected to the virtual broadcast link in the
Exchange domain via five multi-domain dynamic paths.

Figure 6 shows the provisioning time of a VC with different numbers of nodes
in three scenarios. The VC is embedded, respectively, in one cloud site, in three
different sites, and in five different sites. The most important observation is that
the time increases with the number of sites involved. Examination of the provi-
sioning stages in more detail yields further insights: (1) There may be limited

Fig. 5. VC seen in Flukes

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

#T
im

e

#Nodes

1 racks
3 racks
5 racks

Fig. 6. VC scaling performance

Towards an Experimental LegoLand 43

Fig. 7. Original topology Fig. 8. Original manifest

Fig. 9. Delete links Fig. 10. Add links and nodes

resources available at a site, which affects results. For example, at the time of
the experiment, if only 52 cores (standard VM resources) are available at many
sites, VC size cannot be increased to 60. (2) If the entire VC is embedded in a
single site, the majority of provisioning time is spent in creating the VMs. For
example, when the VC size is 45, 75% of the time is used in VM creation in
the OpenStack rack, and most of the rest is spent by ORCA to generate the 45
ORCA reservations. (3) In the multiple-site case, the majority of provisioning
time is spent in configuring the network circuits, including the point-to-point
circuits in AL2S and the multi-point circuits in the Exchange domain. Due the
highly parallel configuration process in ORCA, VM creation occurs in parallel
with the creation of the circuits. In the 60-node five-site case, about 35% of the
time is spent on AL2S and 35% on exchange-domain configuration, whereas the
remaining 30% is spent in ORCA. Circuit-creation times increase in proportion
with the number of sites used, as more path computation and configuration are
needed. (4) ORCA computation time also rises in proportion with the number
of sites involved, as more path- and stitching computations are needed and as
the reservation-management load increases.

Next, we demonstrate the modification sequence for a general topology slice
with live screenshots from Flukes. The time-performance results (not shown) are
dominated by the path-provisioning time. Screenshots show that a slice can be
modified arbitrarily in unlimited steps, an example of the kind of capabilities

44 Y. Xin et al.

inherent in the use of LEGO-like constructs to build complex structures with a
limited number of building-block types.

Specifically, Fig. 7 shows the original virtual topology request. Figure 8 shows
the manifest as the the slice is embedded in a single site. Next, certain links are
deleted, as is shown in Fig. 9. The last one (Fig. 10) shows the result of a series
of additions that include a new inter-rack path to a new node, a storage node,
and a stitching port linking to a facility outside the testbed.

4 Conclusions

The present paper describes the newly developed slice-modification capabilities
in the ExoGENI testbed with emphasis on the scaling of topologies. The under-
lying advanced control software architecture is focused on the federation of cloud
and network substrates. The enhancements presented here yield a comprehen-
sive, efficient IaaS system that gives users great flexibility in controlling and
programming the scales and topologies of virtual systems.

We are developing more powerful APIs and libraries that will utilize slice-
modification functions more fully, thus allowing users and applications to auto-
mate the scaling of virtual topologies.

References

1. Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C., Orlikowski, V.,
Heermann, C., Mills, J.: Exogeni: a multi-domain infrastructure-as-a-service test-
bed. In: McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.) GENI: Prototype of
the Next Internet. Springer-Verlag, New York (2016)

2. Baldine, I., Xin, Y., Mandal, A., Heermann, C., Chase, J., Marupadi, V.,
Yumerefendi, A., Irwin, D.: Orchestration, autonomic cloud network: a GENI per-
spective. In: 2nd International Workshop on Management of Emerging Networks
and Services (IEEE MENS 2010), Co-Located with GLOBECOM 2010, December
2010

3. Baldine, I., Xin, Y., Mandal, A., Ruth, P., Yumerefendi, A., Chase, J.: Exogeni:
a multi-domain infrastructure-as-a-service testbed. In: TridentCom: International
Conference on Testbeds and Research Infrastructures for the Development of Net-
works and Communities, June 2012

4. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable data-
center networks. In: Proceedings of the ACM SIGCOMM 2011 Conference, SIG-
COMM 2011, pp. 242–253. ACM, New York (2011)

5. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D.,
Ricci, R., Seskar, I.: GENI: a federated testbed for innovative network experiments.
Comput. Netw. 61, 5–23 (2014)

6. Chard, R., Bubendorfer, K., Ng, B.: Network health and e-science in commercial
clouds. Future Gener. Comput. Syst. 56, 595–604 (2016)

7. ExoGENI websites. http://www.exogeni.net, http://wiki.exogeni.net
8. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for

secure resource peering. In: Proceedings of the 19th ACM Symposium on Operating
System Principles, October 2003

http://www.exogeni.net
http://wiki.exogeni.net

Towards an Experimental LegoLand 45

9. Gibbons, P.B.: Big data: scale down, scale up, scale out. In: Keynote Talk at the
29th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2015), Hyderabad, India, May 2015

10. Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.-G., Wu, Y.: Cloud performance
modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans.
Parallel Distrib. Syst. 27(1), 130–143 (2016)

11. Irwin, D., Chase, J.S., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing
networked resources with brokered leases. In: Proceedings of the USENIX Technical
Conference, June 2006

12. Kang, J.-M., Lin, T., Bannazadeh, H., Leon-Garcia, A.: Software-defined
infrastructure and the SAVI testbed. In: Leung, C.V., Chen, M., Wan, J., Zhang,
Y. (eds.) Testbeds and Research Infrastructure: Development of Networks and
Communities: 9th International ICST Conference, pp. 3–13. Springer International
Publishing, Cham (2014)

13. McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.): GENI: Prototype of the
Next Internet. Springer-Verlag, New York (2016). In production for publication,
July 2016

14. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC 2011, pp. 5:1–5:14. ACM, New York (2011)

15. Xin, Y., Baldin, I., Heerman, C., Mandal, A., Ruth, P.: Scaling up applications
over distributed clouds with dynamic layer-2 exchange and broadcast service. In:
ITC’26 Workshop on Federated Future Internet and Distributed Cloud Testbeds
(FIDC 2014), Karlskrona, Sweden, September 2014

	Towards an Experimental LegoLand: Slice Modification and Recovery in ExoGENI Testbed
	1 Introduction
	2 Slice Modification and Control Framework Design
	2.1 Motivating Examples
	2.2 Control Framework Support
	2.3 Aggregate Manager Control
	2.4 User Tool and API

	3 Use Cases and Evaluation
	4 Conclusions
	References

