Research on Network Policy Combination
and Conflict Detection in SDN

Bohan He, Ligang Dong(g), Tijie Xu, Shuocheng Fei, Huafei Zhang,
and Weiming Wang

School of Information and Electronic Engineering,
Zhejiang Gongshang University, No. 18, Xuezheng Street,
Xiasha University Town, Hangzhou 310018, China
donglg@zjgsu. edu. cn

Abstract. Since the current SDN southbound interface level is low and pro-
gramming situation is complex, it requires a high-level abstract programming
language to simplify programming. First, this paper improves the NetCore
programming language to generate NetCore-M language, so that it can support
deployment of multi-policies combination including packet drop action. This
paper describes in detail the syntax, semanteme, and implementation of
NetCore-M language. Secondly, this paper describes the network policy conflict
systematically and solves it. Finally, this paper shows that the modified
multi-policies combination algorithm can effectively detect and prompt policies
conflicts based on the implementation of the Pyretic project.

Keywords: Policy combination - Conflict detection + SDN - Pyretic

1 Introduction

Compared with the traditional network [1-3], Software Defined Network (SDN) [6] is
a new type of network architecture whose goal is to simplify network control and
management with the programmability of the network leading innovation.
Despite SDN uses open, standard interfaces such as ForCES [4], OpenFlow [5] to
replace the private configuration commands of different equipment suppliers to sim-
plify the network configuration task. A high-level programming language for SDN is
very necessary.

There are several kinds of high-level programming languages for SDN, such as
Frenetic [12], Pyretic [9], NetCore [7], Procera [13]. NetCore is a programming policy
language based on Frenetic. Our study is based on NetCore.

NetCore policy combination algorithm only takes the forwarding operation into
consideration. The conflict between policies hasn’t been solved yet. Therefore, this
paper modifies NetCore language to support forwarding and packet drop, and then
proposes NetCore-M policy combination algorithm to achieve the conflict detection of
policies combination in order to make the algorithm adapt to more complex pro-
gramming environment.

The main part of this paper is divided into seven sections: The Sect. 2 analyzes the
related research of network programming language in SDN. The Sect. 3 introduces the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
S. Guo et al. (Eds.): TridentCom 2016, LNICST 177, pp. 24-34, 2017.
DOI: 10.1007/978-3-319-49580-4_3

Research on Network Policy Combination 25
improved NetCore-M programming language, syntax and forms. The Sect. 4 intro-
duces the policy conflict problems in policy combination algorithm. In the Sect. 5, we

give a verification experiment to show the results of the policy combination and the
policy conflict. The Sect. 6 summarizes the paper.

2 Related Work

Researchers have developed a number of high-level network programming languages
for SDN to hide the complexity of SDN programming (Table 1).

Table 1. High-level network programming languages

Languages | Controllers | Actions The Operation model
Frenetic | NOX Forwarding Parallel model

Pyretic POX Forwarding, Packet Drop | Parallel model, Serial model
Kinetic POX Forwarding, Packet Drop | Parallel model, Serial model
NetCore | NOX Forwarding, Packet Drop | Parallel model, Serial model

Frenetic is a policy language based on the Ocaml [14] programming language.
Frenetic languages can be classified into two sub-language, one is network policy
management library which process packet forwarding based on FRP [15] and the other
is a declarative SQL language for the network status inquiry.

Pyretic language uses the policy as a function and packets as input and output
variables. Packets can be processed in the form of the parallel or sequential combi-
nation. Later versions of Pyretic is Kinetic [8] which supports combinations of several
consecutive service functions in series and parallel connections. It achieves the function
of simple static service chains.

NetCore is a policy language developed on the basis of Frenetic with more
expressive syntax than that of Frenetic. Besides, NetCore can use arbitrary functions to
process packets with more flexibilities. In addition, NetCore contains a minimalist
inquiry formula language which can be used to analyze the flow.

These four languages have a common feature which is transforming a few abstract
high-level policies into numerous and complicated OpenFlow [10] commands with the
cooperation of the NOX/POX controllers.

3 NetCore-M Programming Language

This paper modifies the NetCore policy combination algorithm and, adds the action of
packet drop and detects the policy conflict. It also proposes the policy conflict detection
mechanism and the policy option scheme based on the priority compromise policy
options.

26 B. He et al.

3.1 Formal Syntax and Semantics of NetCore-M Programming
Language

In this section, we will modify the NetCore language [7] as NetCore-M, to describe the
policy services including language syntax, semanteme, and the description of the
achievement.

We continue to use the basic syntax and semanteme [7] of NetCore and extend the
packet drop action D to the original syntax of the action set A, so that the policy can
support packet drop. Thus the following syntactic definition is added.

Drop action d
Packet drop set D ::= {d}
Actionset A=:=D|S

Fig. 1. The improved formal syntax

NetCore-M contains two parts including predicate and policy. The predicate
describes a set of packets that policy is interested in, and the policy specifies the way to
handle packet sets. Figure 1 shows the improved formal syntax of predicate and policy.

Two types of action sets can’t work together in the same packet, so the current
policy contains two basic forms, namely, e — S and e — D. When the packet is
matching predicate policy in the policy, the packet will implement the attached action.

3.2 The Description of Policy Semanteme

Policy is a priority list composed of priority, mode and action list [11]. The Policy
Compiler is the core component of network policy service. Policy combination and
policy conflict detection will be implemented in the Policy Compiler.

The classification table 7 is composed of sequence rules r(ry,...,7r,...,1,).
Switches process packets based on the information provided by the rules. Each rule
consists of a mode Z and an action list «. The order of the rule in the sequence
represents the priority while the priority of the rule is lower than the rules on the left
side and higher than the rules on the right side.

Functions of rule model are that if the packet p can match the z model of the rule r;,
packet will implement action « according to the description of rule.

The operation semanteme of the policy compiler and switch is shown in action list
which can be expressed as the three cases in the Table 2.

Table 2. The actions of rules

Symbol Meaning

S Forward packets to each switch of set S
Q Forward packets to controllers
__(Empty) | Drop packets

Research on Network Policy Combination 27

We will describe operation semanteme of the compiler and the switch by the
molecular machine [16] as same as NetCore used to. The definition of the relevant
symbols of the molecular machine is shown in Fig. 2.

E-SWITCHPROCESS
PP z:S forward(S,p) =T

Mode z SGs17),TCs 1 9) 28Cs 17).77
Action a=S|_|Q PP zi_

P —— ——
Rule r = z:a S(s17),T(s|p) = S(s17)

E-SWITCHHELP
Classification table # = (73, ..., 7%3,) PP 20 forhelp(2,p) = H(s | p)
SCs 170, TG 12) 2 SCs 170, Hs [)
E-CONTROLLER

Molecular m = S(s | 7#) |T(s |p) | H(s | p)

Molecular machine M = {|mg, ..., m, |} = I?‘)‘“Pj;(z;?; 7‘;))

(a) (b)

Fig. 2. The molecular machine, (a) & (b)

As shown in Fig. 2(b), the operational semanteme is given in the form of derivation
rules. The switch molecules S(s|7) in the figure contain switch s in classification table r.
The transport molecules T (s|p) represent packet p on the way to switch s; the assistant
molecules H(s|p) indicate switch s send a requests to the controller for help on how to
process the packet p.

E-SWITCHPROCESS is utilized when matching rules of packets have no “sent to
the controller” action T(s|p)forward(S,p). The molecular machine will remove and
then it will determine whether use the function according to the rules of the specific
action list. If matching rules of the packet contain “sent to the controller” action, then
E-SWITCHHELP is utilized and a help request of switch structure is sent to the
controller. In this process, the molecular machine will remove processed transport
molecules, and then use function forhelp(£2, p) to generate assistant molecules.

The derivation rule EFCONTROLLER describes the way controllers use compiler
to compile policy classification table and the means to issue and update switch.

3.3 Compilation Process of Forwarding Policy Services

The compilation process of the policies can be divided into two steps, namely, the
policy intermediate form and the classification tablet of policy intermediate form. The
previous step can be further subdivided into the following steps:

(1) Detection and resolution of policy combination.

(2) Detection and resolution of predicate combination.

(3) Predicate compiles to predicate intermediate form.

(4) The combination of predicate intermediate form.

(5) Predicate intermediate form compiles to policy intermediate form.

28 B. He et al.

(6) Policy conflict detection.
(7) The combination of policy intermediate form.

The whole procedure is carried out in sequence, and the result of the last step is the
input of the next step.

We define the intermediate form of syntax as follows in order to discuss policy
conflicts in an easier way.

Boolean value b ::= True |False

Switch level matching mode z == (1 : W) A... A (hy : W)
Predicate intermediate form 7 ::= (e : z : D)
Policy intermediate form p :: = (e : z: A)

Predicate intermediate form contains three values: sequence predicate e, sequence
mode z (i.e., regular mode), and Boolean value b.

The sequence predicate e and the sequence model z have different expression form,
but they contain the same semanteme. The sequence predicate is patterned with header
h and vector W.

In the same tuple of intermediate forms, sequence model z is representation of bit
vector of predicate sequences e. When the model z; can match the packet set is a subset
of sets which z, matches, it is denoted as z; [_ z,. We can give a slight extension of the
symbol C which makes p [z; mean that packet p can match the mode z.

Boolean value b represents the way to process packet set defined by the ordinary
predicates. Policy intermediate form (e :z:A) is similar to predicate intermediate
form, among them, A represents the action set.

3.4 Compilation and Combination Algorithm of Predicate and Policy

Figure 3(a) shows the formal description of predicate compilation and combination
algorithm.

T(s,e) = i

T(s, h:) = ((h: %) : O(h : W) : True),
TG =4
{*: T : False).

- o~ _ {{*:T:True), ifs=s
T <[, e remmm [T0 18 YRz
T(s,ﬁe)=l_[(e(:zi:ﬁb()- (T(s.e)) = (e 27 by)

Tsrur)= (eng iz nz:aua)
(T(s, €)): = (e # z; * by) ”]I
(T, 0), = (e 12t ADe (T(5,7), = (e 12 1 AY)

T(s,ene) = Hﬂ(e,ngj 2Nz b AE),
o
(T, = (e s 20)y (T(s,80); = (€} 5 25 + b))

T(s,eve) = Hﬂ(eme]' iz Nz b Vb)),

(T(s,€)) = (e s 202 b)) (T(s,€7); = (e + 25 = by

(a) (b)

Fig. 3. The compilation and combination algorithm

Research on Network Policy Combination 29

T(s,e)=]]ei:z:b; indicates the sequence of predicate intermediate form is
i

compiled by original predicate e. Among the sequences, the i-th tuple is marked as
(T(s,e)); =e; : zi : b;. The first equation in Fig. 3(a) shows that the compiler will
compile original predicate 4 : w into a sequence of intermediate form tuple containing
with two predicates. The first tuple in the sequence ((h:w) : O(h: w) : True) con-
tains model which is generated by compilation oracle.

For intersection operation of predicates, predicates should be compiled in advance.
And we have tuple members of the predicate ¢ and tuple members of ¢ intersection
combination operation. All of the operation results such as (eiﬂg; 1 I‘Iz]’. 1 b A b;>

constitute of eNe’. If a packet match z; which comes from e, as well as zj’» which comes
from ¢/, and finally the packet will match the sequence model is z; ﬂz}.

For the predicate “and” operation e U¢', the compilation process is similar to the
compilation process of e N e’. What we should focus on is the combination of sequence
predicates and sequence model also remains intersection operation.

For the predicate “not” operation —e, the compilation results is the negation of
Boolean values of the intermediate form.

Figure 3(b) resents a description of policy compilation and combination algorithm.

Function T(s,t) describes the process of policy compiling to the policy intermediate
form, and C(s, 1) corresponds to the process of policy intermediate form generating
classification table.

If we want to compile a basic policy e — A, firstly the compiler need to compile
predicate e to generate predicates intermediate sequence, and then add actions for each
predicate intermediate tuple in order to generate policy intermediate forms tuples which
additional actions are determined by the values b; of (e; : z; : b;). There are two kinds
of situations, if b; is true, the additional action is A, as (e; : z; : A); if b; is false, the
additional action is 0, as (e; : z; : @). There is different between the action of predicate
intermediate tuples and the action of the classification table, so it requires function
C(s,) for further conversion.

For policy combination t U7, the compilation process is similar to it of predicate
“and” operation. The difference is the operation b; A b} of the Boolean value is replaced
by action set operation A; UA}.

Because of policy conflicts, we must conduct conflict detection after packets pro-
cessing action is added to predicate intermediate form and before the action combine

into policy intermediate form. The specific issues of policy conflict will be introduced
in Sect. 4.

4 Policy Conflicts

This section gives further discussions in the policy conflicts.

We divided policy action into two categories including the set of forwarding and set
of packet drop. A packet will never implement packet drop and forwarding operations
at the same time. Therefore, policy conflicts can be defined as following:

30 B. He et al.

Define 1 (policy conflict). There is intersection in the packet sets of different policy
predicate definitions and the actions of forwarding and packet drop exist in the
intersection.

We obtained five cases which are shown in Fig. 4.

Fig. 4. Relationship between policies

As shown in Fig. 4(c) and (e) describe the existence of policy conflicts, Fig. 4(a)
(b) and (d) describe cases of no conflict.

As mentioned above, if there is a conflict, you can choose the appropriate conflict
policy considering the functions of the policy and the scope of the intersection in order
to implement the maximization of the semantics of the policy.

If the conflict in case of Fig. 4(c) occurs, it indicates that the conflict occurs in the
local scope of the two policies. It is the time we further analyze the influence of the
scope of the conflict to compromise policy. If the scope of conflicts have little impact
on compromise policy, we can make compromise policy valid outside the scope of the
conflicts. If the scope of conflicts have much impact on compromise policy, then the
compromise policy must be completely removed.

If a conflict in Fig. 4(e) occurs, it indicates there is a comprehensive conflict policy.
At this point, if the local conflict policy is chosen as a compromise policy, we do
further analysis by the above method. If comprehensive conflict policy is chosen as a
compromise policy, it can be completely removed.

The method is to set the conflict scope set C during the policy combination process
and make the operation under the following conditions:

if ¢,N¢; # Band A;UA = {S,D} then C U (ei me}) “w e
if C =0, no conflict

if C = e, completely conflict in 7

if C = ¢, completely conflict in 7

if CCe, partly conflict in ©

if CCe, partly conflict in T

Research on Network Policy Combination 31

Obviously, the necessary and sufficient conditions for conflicts in form can be
expressed as C # ().

If the local conflicts compromise policy is required to be valid outside the scope of
the conflict in the process of policy combination, we can replace D or S to) in
accordance with the priority policy. Therefore, we get the following forms.

AU A=

{Ai, if C#@ HP(A;) > P(4))
A, if C#¢ HP(A;) <P(4})

Among them, P(A;) represents the priority of the corresponding actions attached in
policies.

S Experiments of Policy Combination Algorithm

Pyretic project and NetCore project share similarities in contents, Therefore, this sec-
tion chooses the Pyretic project as the experimental platform to test the policy com-
bination algorithm.

5.1 Experimental Environment

In order to test the effects of policy combination, this study builds an OpenFlow
(OpenFlow version 1.1. 0) & SDN network test platform based on Mininet and POX
controller, and the test platform runs under Linux.

SDN Switch
> K
e —
10.0.0.1 10.0.0.2

Fig. 5. The experimental topology

At the beginning of the experiment, firstly we need to implement the shell script /
pyretic/mininet.sh to start up Mininet and build the network topology as shown in
Fig. 5.

The topology uses two Mininet simulation hosts (hl and h2) as well as an Open-
Flow switch, and IP of the two hosts are 10.0.0.1 and 10.0.0.2, respectively.

32 B. He et al.

Then Pyretic project is inputted into integrated development environment

PyCharm.

In the condition without any policy applications, host h1 and host h2 are connected
physically but they are logically disconnected. Set the host hl and h2 connected with

the policies as follow, Fig. 6.

©from pyretic.lib.corelib import *
@ from pyretic.lib.std import *

link = (match(dstip="10.0.0.1")>>fwd(1)) + (match(dstip='10.0.0.2")>>fwd(2))

def main():
return link

Fig. 6. The policy of connection

The function of this policy is to forward the packet of destination IP address
10.0.0.1 to interface 1 and to forward the packet of destination IP address 10.0.0.2 to
interface 2. After the application of the policy, the result was shown in Fig. 7. It shows
that the two hosts have been successfully connected physically and logically so that the

experimental environment has been successfully completed.

From 10.0.0.2 icmp_seq=97 Destination Host Unreachable
From 10.0.0.2 icmp_seq=98 Destination Host Unreachable
From 10.0.0.2 icmp_seq=99 Destination Host Unreachable
64 bytes from 10.0.0.1: icmp_req=100 ttl=64 time=0.191
64 bytes from 10.0.0.1: icmp_req=101 ttl=64 time=0.243
64 bytes from 10.0.0.1: icmp_req=102 tt1=64 time=0.038
64 bytes from 10.0.0.1: icmp_req=103 ttl=64 time=0.041

Fig. 7. Connected policy application results

5.2 The Experiment of Policy Conflict

The result of policy conflict as following Fig. 8.

fron pyretic.lib.corelib inport *
fron pyretic.lib.std inport +

conflict = (match(dstip='10.0.0.1")>>fwd(1)) + (match(dstip="10.0.0.2')>>fwd(2)) + (match(dstip="10.0.0.1")>>drop)

def main():
return conflict|

Fig. 8. Policy conflict sample

The policy adds actions of forwarding and packet dropping to packets of destination
IP address 10.0.0.1. According to the definition of conflict in Sect. 4, the modified
policy generates to policy conflicts. After the policy is implemented, the result was

shown in Fig. 9.

ms
ms
ms
ms

Research on Network Policy Combination 33

64 bytes from 1
64 bytes from 1
64 bytes from 1
64 bytes from 1

0.0.1: icmp_req=34 ttl=64 time=0.033 ms
0.0.1: icmp_req=35 ttl=64 time=0.227 ms
.0.0.1: icmp_req=36 ttl=64 time=0.037 ms
0.0.1: icmp_req=37 ttl=64 time=0.136 ms

Fig. 9. The result of conflict policy application results

The results indicates that the function of sub-policy “match (dstip = 10.0.0.1%)

>> drop” was not achieved and has no prompt.

According to the discussion of the policy conflict in Sect. 4, policy conflicts can not
be resolved but can be detected. Therefore, this study adds the detection of policy
conflict and prompt mechanism to the policy combination algorithm in Pyretic projects.
After the policy is utilized in the modified Pyretic project, the results was shown in
Fig. 10.

& “7 wWarning: policy confilct

Involved policy:
match(dstip="10.0.0.1")>>fwd (1)
match(dstip='10.0.0.1')>>drop

Range:
dstip = '10.0.0.1"

=

Please check the policies

Fig. 10. Policy conflict prompt

5.3 Summary

This part carries out a policy conflict test. The policy conflict test shows that the
modified policy combination algorithm can effectively detect the conflict as well as
prompt.

6 The Summary and Prospect

This paper improves the original NetCore programming language. The design of policy
combination algorithm in this paper mainly refers to the policy combination algorithm
in the operation of NetCore system. And on this basis, we added the action of packet
drop to switches. We propose the detection and resolution project after occurrences of
the policy conflict. Finally in order to verify whether the policy combination algorithm
can effectively detect and prompt policy conflict, we implement relevant experiences to
testify the effect of the algorithm based on the Pyretic project.

This paper studies and analyzes on the policy management of the controller, but
due to the limited time and proficiency, the following aspects need to be improved.

(1) We neglect the analysis and comparison of the algorithm performance which will
be completed after the work of forwarding management subsystem is finished.

(2) The algorithm need to be experienced several complex situations and to find the
defects of it. We will finish these tasks in the future.

34

B. He et al.

References

10.
11.

12.

13.

14.

15.

16.

. Ballani, H., Francis, P.. CONMan: a step towards network manageability. J. ACM

SIGCOMM Comput. Commun. Rev. 37(4), 205-216 (2007)

. Chen, X., Mao, Y., Mao, Z.M., et al.: Declarative configuration management for complex

and dynamic networks. In: International Conference. ACM, pp. 1-12 (2010)

. Loo, B.T., Hellerstein, J.M., Stoica, I, et al.: Declarative routing: extensible routing with

declarative queries. J. ACM SIGCOMM Comput. Commun. Rev. 35(4), 289-300 (2005)

. Doria, A., Salim, J.H., Haas, R., et al.: Forwarding and Control Element Separation

(ForCES) Protocol Specification. In: IETF RFC 5810 (Proposed Standard) (2010)

. Mckeown, N., Andemon, T., Balakrishnan, H., et al.: OpenFlow: enabling innovation in

campus networks. J. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69—74 (2008)

. Yi, Z., Yigiang, H., Xiaofeng, H.: Characteristics, development and future of SDN.

J. Telecommun. Sci. 29(9), 102-107 (2013). (in Chinese)

. Monsanto, C., Foster, N., Harrison, R., et al.: A compiler and run-time system for network

programming languages. J. ACM SIGPLAN Not. 47(1), 217-230 (2012)

. Kim, H., Reich, J., Gupta, A., et al.: Kinetic: verifiable dynamic network control. In:

USENIX NSDI 2015 (2015)

. Reich, J., Monsanto, C., Foster, N., et al.: Modular SDN programming with Pyretic.

USENIX; login 38(5), 128-134 (2013)

OpenFlow Switch Specification Version 1.0. 0. OpenFlow Switch Consortium (2009)

Jin, X., Rexford, J., Walker, D.: Incremental update for a compositional SDN hypervisor. In:
Third Workshop on Hot Topics in Software Defined Networking. ACM, pp. 187-192 (2014)
Foster, N., Harrison, R., Freedman, M.J., et al.: Frenetic: a network programming language.
ACM SIGPLAN Not. 46(9), 279-291 (2011). ACM

Voellmy, A., Kim, H., Feamster, N.: Procera: a language for high-level reactive network
control. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks.
ACM, pp. 4348 (2012)

Hickey, J.: Introduction to the Objective Caml programming language. Verfiigbar unter.
http://docs.happycoders.org/html/dev/ocaml/index.php

Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, continued. In:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. ACM, pp. 51-64 (2002)
Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM,
pp- 81-94 (1989)

http://docs.happycoders.org/html/dev/ocaml/index.php

	Research on Network Policy Combination and Conflict Detection in SDN
	Abstract
	1 Introduction
	2 Related Work
	3 NetCore-M Programming Language
	3.1 Formal Syntax and Semantics of NetCore-M Programming Language
	3.2 The Description of Policy Semanteme
	3.3 Compilation Process of Forwarding Policy Services
	3.4 Compilation and Combination Algorithm of Predicate and Policy

	4 Policy Conflicts
	5 Experiments of Policy Combination Algorithm
	5.1 Experimental Environment
	5.2 The Experiment of Policy Conflict
	5.3 Summary

	6 The Summary and Prospect
	References

