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Abstract. Quality of Service (QoS) Routing problem has been attract-
ing considerable attention thanks to the rapid development of the high-
speed communication network, image processing and computer science.
In the past decades, many Quality of Service Routing algorithms were
presented based on the QoS requirements and the resource constraints.

The idea of the inverse optimization problem is to modify the given
or estimated parameters such that the given feasible solution became
an optimal solution. The modification costs are measured by different
norms, such as l1 norm, l2 norm, l∞ norm, Hamming distance and so on.

In this paper, we consider the inverse multicast quality of service
routing problems under the weighted l1 norm. We present combinatorial
algorithms which can be finished in strongly polynomial time.

Keywords: Communication network · Quality of service routing ·
Inverse problem · Strongly polynomial combinatorial algorithm

1 Introduction

The notion of Quality of Service has been proposed to capture the qualitatively or
quantitatively defined performance contract between the service provider and the
user applications in communication networks. The quality of service requirement
of a connection is given as a set of constraints, which can be link constraints,
path constraints, or tree constraints. The routing problems can be divided into
two major classes: unicast routing and multicast routing.

The unicast quality of service routing problem with bandwidth and delay
is defined as follows: given a graph (V,E, s, t), V = {1, 2, . . . , n}, E = {e1, e2,
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. . . , em}, s is the service provider and t is the terminal user. Let each edge ei
has associated bandwidth bi and delay di, and let b = {b1, b2, . . . , bm} denote the
bandwidth vector, d = {d1, d2, . . . , dm} denote the delay vector. Then we want
to find an s − t path P which satisfies the quality of service requirement, i.e.,
minei∈P bi ≥ B and

∑
ei∈P di ≤ D, where B and D are given threshold.

The multicast quality of service routing problem with bandwidth and
delay is defined as follows: given a graph (V,E, s, t), V = {1, 2, . . . , n}, E =
{e1, e2, . . . , em}, s is the service provider and t = {t1, t2, . . . , tk}(k ≤ m) is the
set of terminal users. Let each edge ei has associated bandwidth bi and delay di,
and let b = {b1, b2, . . . , bm} denote the bandwidth vector, d = {d1, d2, . . . , dm}
denote the delay vector. Then we want to find a tree T covering s and all nodes
in t which satisfies the quality of service requirement, i.e., minei∈Pj

bi ≥ Bj ,∑
ei∈Pj

di ≤ Dj , j = 1, 2, . . . , k, where Pj is the unique path from s to tj on the
tree T , and Bj , Dj are given threshold.

Multicast routing can be viewed as a generalization of unicast routing in
many cases. For more details, the readers may refer to the survey paper [4] and
papers cited therein.

Conversely, an inverse quality of service routing problem is to modify the
parameters as little as possible such that a given s − t path P can satisfy the
quality of service requirement for the unicast routing, or a given tree T which
covering s and all nodes in t can satisfy the quality of service requirement for the
multicast routing. The parameters considered in this paper are bandwidth and
delay, and the modification cost is measured by the weighted l1 norm. Note that
a path is a special tree, i.e., inverse unicast routing problem is a special case
of the inverse multicast routing problem. Hence, we only consider the inverse
multicast routing problem in detail.

Inverse multicast routing problem
Let each edge ei has associated bandwidth modification cost wb

i and delay mod-
ification cost wd

i , and let wb = {wb
1, w

b
2, . . . , w

b
m} denote the bandwidth modi-

fication cost vector, wd = {wd
1 , w

d
2 , . . . , w

d
m} denote the delay modification cost

vector. Let T be a given tree which covering s and all nodes in t, but under the
current b and d, the T can not satisfy the quality of service requirement, i.e.,
minei∈Pj

bi < Bj ,
∑

ei∈Pj
di > Dj , j = 1, 2, . . . , k. Then for the inverse multicast

routing problem with bandwidth and delay under the weighted l1 norm, we look
for a new bandwidth vector b∗ and a new delay vector d∗ such that

(a) the given tree T satisfies the quality of service requirement, i.e.,
minei∈Pj

b∗
i ≥ Bj ,

∑
ei∈Pj

d∗
i ≤ Dj , j = 1, 2, . . . , k;

(b) for each ei ∈ E, −lbi ≤ b∗
i − bi ≤ ub

i , −ldi ≤ d∗
i − di ≤ ud

i , where
lbi , u

b
i , l

d
i , u

d
i ≥ 0 are respectively given bounds for bandwidth and delay;

(c) the total modification cost for change bandwidth and delay of all edges,
i.e.,

∑
ei∈E wb

i |b∗
i − bi| +

∑
ei∈E wd

i |d∗
i − di|, is minimized.

In general, in an inverse optimization problem, a feasible solution is given
which is not optimal under the current parameter values, and it is required to
modify some parameters with minimum modification cost such that the given
feasible solution becomes an optimal solution. Burton and Toint [3] were the
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first who investigate the inverse version of the shortest path problem. Since
then, different inverse optimization problems have been well studied when the
modification cost is measured by (weighted) l1 norm, l2 norm, l∞ norm and
Hamming distance. Some examples are the inverse minimum cost flow problem
[1,5,9], the inverse center location problem [2,12,14], the inverse shortest path
problem [3,13,15], the inverse minimum cut problem [7,10,11] and so on. For
more details, readers may refer to the survey paper [6] and papers cited therein.

The problem considered in our paper has so far not been treated in literature,
but seems to have some potential applications in real world. For example, the
service provider has built his own network (path for one to one service, tree for
one to many service) to service his customers. At the beginning, the network is
optimal for the service provider. But as the service requirement is growing, the
exist network is not optimal any more, i.e., it can not satisfies the customers’
requirement. Hence, the service provider need to improve the exist network to
meet the customers’ requirement. Which is the model considered in this paper.

The remainder of the paper is organized as follows. Section 2 considers the
inverse multicast quality of service routing problem with bandwidth and delay
under the weighted l1 norm. Strongly polynomial combinatorial algorithms are
presented. Some final remarks are made in Sect. 3.

2 Inverse Multicast Quality of Service Routing Problem

In this section, we are going to consider the inverse multicast quality of service
routing problem with bandwidth and delay under the weighted l1 norm, which
can be formulated as follows.

min
∑

ei∈E

wb
i |b∗

i − bi| +
∑

ei∈E

wd
i |d∗

i − di|
s.t. min

ei∈Pj

b∗
i ≥ Bj , j = 1, 2, . . . , k;

∑

ei∈Pj

d∗
i ≤ Dj , j = 1, 2, . . . , k;

−lbi ≤ b∗
i − bi ≤ ub

i , i = 1, 2, . . . , m;
−ldi ≤ d∗

i − di ≤ ud
i , i = 1, 2, . . . ,m.

(1)

Note that b and d are independent when they are be changed. Hence problem
(1) can be divided into the following two problems:

min
∑

ei∈E

wb
i |b∗

i − bi|
s.t. min

ei∈Pj

b∗
i ≥ Bj , j = 1, 2, . . . , k;

−lbi ≤ b∗
i − bi ≤ ub

i , i = 1, 2, . . . ,m.

(2)

min
∑

ei∈E

wd
i |d∗

i − di|
s.t.

∑

ei∈Pj

d∗
i ≤ Dj , j = 1, 2, . . . , k;

−ldi ≤ d∗
i − di ≤ ud

i , i = 1, 2, . . . ,m.

(3)
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Theorem 1. Suppose b∗ is an optimal solution of problem (2) and d∗ is an
optimal solution of problem (3). Then the optimal solution of problem (1) is
{b∗, d∗}, and the associate optimal value is

∑

ei∈E

wb
i |b∗

i − bi| +
∑

ei∈E

wd
i |d∗

i − di|.

Hence, we need to solve problems (2) and (3), respectively.
For problem (2), it is to modify the bandwidth under the given bound as little

as possible such that the given tree T meet the bandwidth constraint. First, it
is clear that the bandwidth of the edges out of the tree T need not be changed.
Second, for the edges belong to the tree T , we need to increase the bandwidth for
some of them to meet the bandwidth constraint. Due to the objective function
and the bandwidth bound constraint of problem (2), for the edges belong to the
unique path from s to tj , if bi ≥ Bj , then the bandwidth need not be changed,
otherwise, the bound must satisfies bi+ub

i ≥ Bj and we increasing the bandwidth
to Bj . Hence, we have the following algorithm to solve problem (2).

Algorithm 1
Step 1. Let j = 1.
Step 2. Let Pj denote the unique path from s to tj . If there exist an edge

ei ∈ Pj such that bi + ub
i < Bj , then output problem (2) is infeasible and stop.

Otherwise, set

ub
i =

⎧
⎨

⎩

ub
i , ei /∈ T,

ub
i , ei ∈ Pj and bi ≥ Bj ,

ub
i − (Bj − bi), ei ∈ Pj and bi < Bj ,

bi =

⎧
⎨

⎩

bi, ei /∈ T,
bi, ei ∈ Pj and bi ≥ Bj ,
Bj , ei ∈ Pj and bi < Bj ,

Step 3. If j = k, output the current bandwidth vector b as an optimal solution
of problem (2). Otherwise, set j = j + 1 and go back to the Step 2.

Theorem 2. The Algorithm 1 solves problem (2) with a time complexity O(k) ≤
O(n).

Proof. First, from the above analysis, the validity of the Algorithm 1 is straight-
forward.

Second, let us consider the time complexity of the algorithm. We designate
computations starting from Step 2 until switching back to the next Step 2 as
one iteration. In each iteration, we will modify the bandwidth of some of the
edges on the path Pj to let the associate tj meet the bandwidth constraint or
find problem (2) is infeasible, which means the Algorithm 1 will terminate at
most k iterations. Combining with the computation of the Step 2, the Algorithm
1 runs in O(k) ≤ O(n). ��

For problem (3), it is to modify the delay as little as possible such that the
given tree T meet the delay constraint. First, it is clear that the delay of the edges
out the tree T need not be changed. Second, for the edges belong to the tree T ,
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we need to decrease the delay for some of them to meet the delay constraint.
Hence, we can rewrite problem (3) as following.

min
∑

ei∈T

wd
i (di − d∗

i )

s.t.
∑

ei∈Pj

d∗
i ≤ Dj , j = 1, 2, . . . , k;

0 ≤ di − d∗
i ≤ ldi , i = 1, 2, . . . ,m.

(4)

For simplicity, denote Δdi = di −d∗
i ,ΔDj =

∑

ei∈Pj

di −Dj . Then problem (4)

is simplified to
min

∑

ei∈T

wd
i Δdi

s.t.
∑

ei∈Pj

Δdi ≥ ΔDj , j = 1, 2, . . . , k;

0 ≤ Δdi ≤ ldi , i = 1, 2, . . . , m.

(5)

To solve problem (5), we first consider a special case: ΔDj = C for j =
1, 2, . . . , k, where C is a given threshold, i.e., the following problem.

min
∑

ei∈T

wd
i Δdi

s.t.
∑

ei∈Pj

Δdi ≥ C, j = 1, 2, . . . , k;

0 ≤ Δdi ≤ ldi , i = 1, 2, . . . ,m.

(6)

To solve problem (6), we construct a new weighted graph G̃ based on the
given tree T . The node set of G̃ is V (T ) ∪ {r}, i.e., add a new node r to the
tree T . The edge set of G̃ is E(T ) ∪ {(ti, r), i = 1, 2, . . . , k}, i.e., besides the tree
edges, add new edges connect the terminal nodes ti and the new node r. And
we set the weight of the edges as

wi =
{

wd
i , ei ∈ T,

+∞, ei = (ti, r).

An illustration of the weighted graph G̃ is shown in Fig. 1.

Fig. 1. An illustration of the weighted graph ˜G.
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Theorem 3. Suppose M is the edge set of a minimum s− r cut of the weighted
graph G̃. Then the following {Δd∗

i } form an optimal solution of problem (6) with
C ≤ min

ei∈M
ldi .

Δd∗
i =

{
C, ei ∈ M,
0, ei ∈ T \ M.

Proof. First, the {Δd∗
i } given by the theorem satisfies the first constraint of

problem (6) since M is the edge set of a minimum s − r cut of the weighted
graph G̃. Second, the {Δd∗

i } given by the theorem satisfies the second constraint
of problem (6) since we set C ≤ min

ei∈M
ldi before. Hence, the {Δd∗

i } given by the

theorem is a feasible solution of problem (6).
Furthermore, we say the {Δd∗

i } given by the theorem is an optimal solution
of problem (6). Otherwise, there exist another optimal solution {Δ̃di}. Denote
M ′ = {ei ∈ T |Δ̃di 	= 0}. Then for ei ∈ M , denote ei = (x, y), Px is the unique
path form s to x and Ty is the subtree whose root is y (we will use the same
notation for other nodes in the following). If Δ̃di 	= Δd∗

i for ei ∈ M , then at
least one of the following two cases will occur.

Case 1. M ′ ∩ Ty 	= ∅. In this case, we can transfer the modification of the
delay from M ′ ∩ Ty to ei ∈ M without increasing the modification cost since M

is a minimum s − r cut of the weighted graph G̃.
Case 2. M ′ ∩ Px 	= ∅. For ẽi = (x̃, ỹ) ∈ M ′ ∩ Px, we can transfer the

modification of the delay from ẽi to M ∩ Ty without increasing the modification
cost since M is a minimum s − r cut of the weighted graph G̃. Hence, consider
the edges belong to M ′ ∩ Px one by one, we can transfer the modification of the
delay from M ′ ∩ Px to M without increasing the modification cost.

Combining the above two cases, consider the edges belong to M ′ one by one,
we can transfer the modification of the delay from M ′ to M without increasing
the modification cost, which means the {Δd∗

i } given by the theorem is an optimal
solution of problem (6). ��
Theorem 4. Suppose Δdi is a feasible solution of problem (5), then Δdi can be
presented as Δdi = Δd1i + Δd2i , where Δd1i is a feasible solution of problem (6)
and Δd2i is a feasible solution of the following problem.

min
∑

ei∈T

wd
i Δdi

s.t.
∑

ei∈Pj

Δdi ≥ ΔDj − C ≥ 0, j = 1, 2, . . . , k;

0 ≤ Δdi ≤ ldi , i = 1, 2, . . . ,m.

(7)

Proof. First, let

Vh = {v ∈ V (T ) | the number of the edges of the path from s to v is h}.

In this way, V (T ) is decomposed to its subsets V0, V1, . . . , Vq, where q is the
number of the edges of the longest path from s to the nodes in the tree T .
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Suppose Δdi is a feasible solution of problem (5), then it is easy to know the
Δd1i ,Δd2i given by the following algorithm will satisfy the theorem.

Algorithm 2
Step 1. Set h = 0.
Step 2. Select an ei = (x, y) such that x ∈ Vh, y ∈ Vh+1. Let Ω = C −∑

ei∈Px

Δd1i , where Px is the unique path form s to x.

Step 3. If Δdi ≤ Ω, then set Δd1i = Δdi,Δd2i = Δdi − Δd1i .
Otherwise, set Δd1i = Ω,Δd2i = Δdi − Δd1i .

Step 4. Set Vh+1 = Vh+1 \ {y}. If Vh+1 	= ∅, then go back to the step 2.
Step 5. If h + 1 = q, stop. Otherwise, set h = h + 1 and go back to the

step 2. ��
Theorem 5. Suppose Δd1∗

i and Δd2∗
i are optimal solutions of problems (6) and

(7), respectively. Then Δd∗
i = Δd1∗

i +Δd2∗
i is an optimal solution of problem (5).

Proof. First, it is easy to know that Δd∗
i is a feasible solution of problem (5)

since Δd1∗
i and Δd2∗

i are optimal solutions of problems (6) and (7).
Next, we will show that Δd∗

i is an optimal solution of problem (5).
Suppose Δdi is a feasible solution of problem (5). Then by the Theorem4,

the Δdi can be represented as Δd1i + Δd2i such that Δd1i is a feasible solution of
problem (6) and Δd2i is a feasible solution of problem (7). We have

∑

ei∈T

wd
i Δd1i ≥

∑

ei∈T

wd
i Δd1∗

i ,

∑

ei∈T

wd
i Δd2i ≥

∑

ei∈T

wd
i Δd2∗

i ,

since Δd1∗
i and Δd2∗

i are optimal solutions of problems (6) and (7).
Hence ∑

ei∈T

wd
i Δdi

=
∑

ei∈T

wd
i Δd1i +

∑

ei∈T

wd
i Δd2i

≥
∑

ei∈T

wd
i Δd1∗

i +
∑

ei∈T

wd
i Δd2∗

i

=
∑

ei∈T

wd
i Δd∗

i ,

which implies Δd∗
i is an optimal solution of problem (5). ��

Combining the above analysis, we can solve problem (5) by the following
algorithm.
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Algorithm 3
Step 1. Construct a weighted graph G̃ as showed in the Fig. 1. Let Δdi = 0

for ei ∈ T .
Step 2. Find a minimum s − r cut M for the current weighted graph. If the

weight of the s− r cut M is equal to +∞, then output problem (5) is infeasible.
Otherwise, set

ld = min{ldi | ei ∈ M and ldi > 0},

ΔD = min{ΔDj | j = 1, 2, . . . , k and ΔDj > 0},

C = min{ld,ΔD},

Δdi =
{

C, ei ∈ M,
Δdi, ei ∈ T \ M.

ldi =
{

ldi − C, ei ∈ M,
ldi , ei ∈ T \ M.

wi =
{

+∞, ldi = 0,
wi, ldi > 0.

ΔDj = ΔDj − C.

Step 3. If ΔDj = 0 for all j = 1, 2, . . . , k, stop and output the current {Δdi}
as an optimal solution of problem (5). Otherwise, go back to the Step 2.

Theorem 6. The Algorithm 3 solves problem (5) with a time complexity

O(n1m
2
1) ≤ O(nm2),

where n1 is the node number of the given tree T and m1 is the edge number of
the given tree T .

Proof. First, we show the validity of the algorithm.
If the algorithm stops at the Step 2, i.e., there exists at least one ΔDj > 0

and the weight of the minimum s−r cut of the current weighted graph is equal to
+∞, that is to say there exists at least one s−tj path Pj such that

∑

ei∈Pj

di > Dj

and the delay of the edges on the path Pj can not be changed anymore, which
implies problem (5) is infeasible.

We next consider the case that problem (5) is feasible, i.e., the algorithm
stops at the Step 3. We designate computations starting from the Step 2 until
switching back to the next Step 2 as one iteration. From the Theorem3, we find
an optimal solution of an instance of problem (6) in each iteration. Furthermore,
combining all iterations we find an optimal solution of problem (5) due to the
Theorem 5.

Finally, we study the time complexity of the Algorithm 3. It is clear that
the Step 1 takes O(m1) to construct the weighted graph G̃, where m1 is the
edge number of the given tree T . In each iteration, the main computation is
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to find a minimum s − r cut which can be done in O(n1m1) [8], where n1 is
the node number of the given tree T . Furthermore, in each iteration, we will
set at least one of ldi equals 0 or at least one of ΔDj equals 0, which means
the algorithm iterates for at most k + m1 times. Hence, the algorithm runs in
O(m1 + n1m1 · (k + m1)) = O(n1m

2
1) ≤ O(nm2) time in the worst case, which

is a strongly polynomial time algorithm. ��

3 Concluding Remarks

In this paper, we study the inverse multicast quality of service routing problem
with bandwidth and delay under the weighted l1 norm in detail and present
strongly polynomial algorithms.

There are some related inverse problems that deserve further study. First,
it is interesting to study the inverse quality of service routing problem with
bandwidth and delay with other norms, such as l2, l∞ and Hamming distance.
Second, it is meaningful to consider the inverse quality of service of routing
problem with other parameters. Studying computational complexity results and
proposing optimal/approximation algorithms are promising.
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