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Abstract. 3D fingerprint identification is an emerging biometric
authentication method, which is powerful against spoofing attacks. For
actualizing 3D fingerprint identification, this paper develops a 3D fin-
gerprint minutiae cloud reconstruction technique based on 2D multiview
touchless fingerprint images. This technique provides a practical solution
for 2D minutiae matching for multiview fingerprint images, when tradi-
tional feature correspondence finding based on 2D SIFT (Scale Invariant
Feature Transformation) feature points fails. In this case, developing a
new 2D feature point correspondence establishment algorithm is neces-
sary to cover the deficiency of the SIFT-based technique. In this paper,
minutiae, a type of detailed ridge-valley features in fingerprint images,
are utilized for the correspondence discovery. Furthermore, differential
evolution, an efficient evolutionary computing framework is employed to
directly infer the possible correspondence of minutiae sets from the dif-
ferent posed fingerprint images. Our experiments demonstrate that the
proposed direct 2D feature point correspondence discovery strategy is
able to handle the cases when the SIFT-based matching fails. To further
illustrate the advantages of the proposed algorithm, 3D fingerprint minu-
tiae cloud construction is conducted based on the feature correspondence
discovered by the proposed algorithm. The experiments on 2D different
posed fingerprint image matching and 3D fingerprint minutiae cloud con-
struction show that the proposed algorithm can be used as an alternation
when SIFT-based matching fails.

Keywords: 3D fingerprint reconstruction · Feature matching ·Minutiae
cloud · Differential evolution

1 Introduction

3D fingerprint identification system is an emerging biometric authentication
method, which is powerful for anti-spoofing attacks. Beyond 2D image domain,
finger object built on point cloud and curved surface can be displayed within 3D
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space, which provides more stereo sense [5]. Being different from traditional 2D
fingerprint identification systems, 3D fingerprint identification systems hold the
following advantages.

– Contactless Fingerprint Image Acquisition: Traditional 2D fingerprint
images have to be captured by placing, pressing or rolling fingers against opti-
cal scanning devices or finger trace cards. Such operations usually result in
distorted, incomplete and low resolution fingerprint images. Instead, 3D fin-
gerprint imaging systems provide contactless scanning setting, which directly
prevent finger from touching imaging devices. The resultant fingerprint images
are non-distorted, complete, multi-posed and resolution guaranteed. The 2D
multi-posed fingerprint images captured by 3D fingerprint imaging system are
shown in Fig. 1.

– Man-made Finger Model Prevention: Traditional 2D fingerprint identi-
fication systems are being challenged by man-made finger models in recent
years. That is, the imposter finger models, which are made by printing fin-
ger ridge-valley patterns onto rubber, plastic, and other soft materials, are
intended to fool the 2D fingerprint identification systems. Consequently, the
2D fingerprint identification systems are unable to distinguish whether the
fingers under investigation are genuine human fingers. On the contrary, 3D
fingerprint identification systems can easily validate whether the investigated
fingers are artificially made ones.

(a) (b) (c)

Fig. 1. 2D Multi-posed fingerprint images (left thumb): (a) left lateral view; (b) frontal
view; and (c) right lateral view.

3D fingerprint construction process plays an essential role for 3D fingerprint
identification system. Within 3D fingerprint identification system, the target
finger can be captured by multiple built-in cameras. Since these built-in cameras
are differently posed, the resultant pictures are differently posed. To generate
3D finger model, 3D construction process works on the obtained multi-posed 2D
images [2,4]. To be explicit, as an initial step, correspondence between different
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posed images should be discovered. In most cases, the correspondence discovery
depends on feature points obtained by specific feature point detection method
such as SIFT. Afterward, based on the discovered correspondence in 2D domain,
the spatial coordinates for the detected feature points in 3D space are calculated
by 3D triangle reconstruction. Furthermore, other points’ 2D correspondence
can be inferred based on the prior correspondence establishment. Then their 3D
coordinates are also calculated via 3D triangle reconstruction. At the end, the
point cloud can be generated and it is further used to form the curved surface
of the 3D finger model [1,3].

For discovering feature level correspondence between two differently posed
images, SIFT is one of the most popular methods. After SIFT point detec-
tion process, the image points, whose multi-scale Gaussian filtering response are
salient, are labeled as feature points. For each individual feature point, it holds a
high-dimension feature vector. Such feature vector is a summary of local gradi-
ent information in terms of gradient magnitude and direction. Furthermore, two
points whose feature vectors have higher similarity are matched between different
images, while two points with lower feature vector similarity are not matched.
The correspondence between different images is discovered via the matched fea-
ture points [5]. For fingerprint images, however, the feature vectors are generally
similar, as the local regions centered at every feature points have very similar
ridge-valley structures (the local summarized gradient information are also very
similar). Such local structure similarity significantly reduces the discrimination
of the feature vector-based matching. Therefore, massive mismatches happen
between the different posed fingerprint images. In this case, the SIFT-based fea-
ture point matching approach is unable to work. Figure 2 shows an example when
SIFT-based feature matching method is applied to the left and frontal images
in Fig. 1.

Fig. 2. An example: SIFT-based feature matching method fails to find the correspon-
dence between the left and frontal views in Fig. 1.
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For covering the SIFT deficiency, we propose a direct feature point corre-
spondence discovery algorithm based on evolutionary computing in this paper.
As an initial step, the minutiae in fingerprint images are utilized instead of using
the SIFT feature points. Furthermore, the proposed technique treats the feature
point matching problem as the optimization problem. To maximize the num-
ber of the matched feature points between two images, differential evolution,
a fast searching evolutionary computing algorithm is adopted. The rest of this
paper is organized as follows: in Sect. 2, the differential evolution-based minutiae
matching method is introduced; in Sect. 3, the experiments for 2D different posed
minutiae set matching and 3D minutiae point cloud construction are conducted;
in Sect. 4, the conclusion and future research directions are given.

2 Proposed Method

The minutiae matching process can be regarded as the process to search for more
and more mated minutiae points from differently posed fingerprint images. To
actualize this process, we utilize differential evolution algorithm [6,7]. A sum-
mary for the proposed differential evolution-based minutiae matching program
is provided as follows.

– Step 1: Input two differently imposed 2D fingerprint images.
– Step 2: Employ Verifinger SDK to extract minutiae points for input images.

The outputs obtained from Verifinger SDK are minutiae points’ coordinates
in 2D image domain.

– Step 3: Generate fundamental matrix and initially set up its elements. These
elements belonging to the fundamental matrix are treated as the parameters
which need to be optimized by the differential evolution algorithm. Also, the
generated fundamental matrix must be a rank-two matrix.

– Step 4: Define objective function for optimization. Such objective function
is required to represent the underlying relationship between the fundamental
matrix’s elements and the number of the matched minutiae points for both
images.

– Step 5: Define epipolar constraint and spatial constraint for point-to-point
matching.

– Step 6: Iteratively run the differential evolution algorithm until the termina-
tion conditions are satisfied.

– Step 7: Export the optimized fundamental matrix’s parameters. Based on
these optimized parameters, the minutiae point correspondence relationship
can be obtained.

To be explicit, the technical details involved in each individual step are
described as follows.

2.1 Minutiae Extraction

Minutiae extraction is the first step for the subsequent procedures. To ensure
the reliability of the extracted minutiae points, Verifinger SDK, a widely used
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(a) (b)

Fig. 3. The extracted minutiae by Verifinger SDK for the left and frontal views in
Fig. 1: (a) left view’s minutiae points; and (b) frontal view’s minutiae points.

commercial software development kit for biometric applications, is employed
in this paper. We believe that VeriFinger SDK is the most reliable minutiae
extractor in public domain as far as we know. For the multi-posed fingerprint
images captured by the 3D imaging system, we cannot find any other softwares
or computer programs for fingerprint minutiae detection and extraction, which
can be competitive or even better than VeriFinger SDK. Figure 3 shows the
extracted minutiae for the left and frontal views in Fig. 1 respectively.

2.2 Fundamental Matrix

Fundamental matrix is a core concept in computer vision system, which explains
projective geometric relationship for associated 2D objects. Also, the fundamen-
tal matrix is a low-rank matrix whose dimension is 3 × 3 and rank should be
equal to two. This strict equality imposed on the matrix rank to regulate the
epipolar lines in one view can be converged into a point (such point is called epi-
pole). To guarantee the fundamental matrix’s rank equals to two, the following
matrix decomposition strategy is applied.

F = A · B =

⎡
⎣

A1 A2

A3 A4

A5 A6

⎤
⎦ ·

[
B1 B2 B3

B4 B5 B6

]
(1)

where the elements in matrixes A (dimension 3 × 2) and B (dimension 2 ×
3) can be assigned by arbitrary numeric values (all zeros are exceptional) and
rank (F ) = 2. Due to the multiplication between A and B, the number of the
parameters which need to be optimized for F is twelve.
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2.3 Objective Function

The objective function pushes the differential evolution algorithm approaching
to the optimal parameters and solutions. By evaluating individual fitness in
whole population, the algorithm is not only to preserve the individuals with
higher fitness but also to weed out the ones with lower fitness. To better drives
the differential evolution algorithm to work towards the optimum, an objective
function which can map the twelve parameters for fundamental matrix F onto
the number of the matched minutiae points is created. In this sense, the incre-
ment of the matched minutiae points can positively feedback the evolution of
the parameter’s values. When the maximal number of the matched minutiae is
achieved, it means the differential evolution algorithm has already converged to
the optimal solutions for the target parameters.

2.4 Epipolar Constraint and Spatial Constraint

Both epipolar and spatial constraints are required to be considered simultane-
ously to avoid invalid solutions for target parameters during differential evolution
searching process. Figure 4 illustrates how the epipolar constraint works.

Fig. 4. An example to show how the epipolar constraint works.

In Fig. 4, the images are captured from left and frontal views respectively.
A point, located at the same position of the chessboard, appears in the two
different views. We denote it as PA in left view image and PB in frontal view
image. Under the projective transformation of the fundamental matrix, PA is
projected into an epipolar line LA in the frontal view image and PB is mapped
to an epipolar line LB in the left view image. In the left view image, the epipolar
line LB passes through PA. Also, in the frontal view image, the epipolar line LA

passes through PB . This observation evidences a very important characteristic
for the fundamental matrix. It demonstrates that PA can be matched against
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PB when PA’s epipolar line passing through PB . This important characteristic
directs the differential evolution algorithm to seek for the points, whose epipolar
lines should pass through another view’s points. Mathematically, a valid point-
to-point match should be counted when the following condition is satisfied.

[PB , 1] · F · [PA, 1]T = [PB , 1] · LA = 0 (2)

where PA =
[
P

(x)
A , P

(y)
A

]
and PB =

[
P

(x)
B , P

(y)
B

]
(dimension 1 × 2).

Being different from the epipolar constraint, spatial constraint only focuses on
the minutiae points’ relative locations in both horizontal and vertical directions.
Figure 5 shows how the horizontal spatial constraint works. For the horizontal-
axis constraint, the matched minutiae points’ relative shifts along horizontal-
axis should be the same. The point relative shift is calculated according to the
following formula. In Fig. 5, the yellow and pink reference lines are determined
according to the fingertip.

x̃point =
xpoint − xyellow

xpink − xyellow
(3)

where x̃point is the horizontal relative shift of the minutiae point. xpoint, xyellow

and xpink stand for the x coordinates for the minutiae point, the yellow reference
line and the pink reference line respectively.

Fig. 5. An example to show how the horizontal spatial constraint works. (Color figure
online)

Besides, Fig. 6 exhibits how the vertical spatial constraint works. For the
vertical-axis constraint, the matched minutiae points’ y coordinates should be
the same. That is, the matched minutiae points’ heights are at the same level in
image domain.
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Fig. 6. An example to show how the vertical spatial constraint works.

3 Experiments

To validate the feasibility and effectiveness of the proposed direct minutiae
matching algorithm, we conduct the following two experiments: (i) the minu-
tiae point level’s correspondence discovery between two differently posed 2D
fingerprint images; and (ii) minutiae point cloud construction within 3D space.

3.1 Minutiae Point Correspondence Discovery

The data set used for this study is collected from the internal volunteers from
the University of New South Wales. This data set consists of 150 volunteers’
3D fingerprint imaging records. Each volunteer case includes 10 fingers from left
palm to right palm. For each single finger, we capture its left, frontal and right
view images by 3 built-in cameras in 3D fingerprint imaging system. For ensuring
robustness and reliability, we scan every single finger twice. In total, we collect
60 = 10× 3× 2 2D fingerprint images for each volunteer. Afterwards, we extract
the minutiae points by using VeriFinger SDK. Therefore, we obtain 60 minutiae
point files for each volunteer case.

As an example, we demonstrate the minutiae point matching results in Fig. 7.
The result shown in Fig. 7(a) is obtained based on a single run of the proposed
algorithm. To search for more matched minutiae points, Monte Carlo simula-
tion based on multiple runs is conducted (the result is shown in Fig. 7(b)). For
each independent trial, the proposed differential evolution-based algorithm starts
with a group of randomly initialized solutions. The randomly initialized solutions
could be different for each independent run, since the random number generator
built in the differential evolution approach works on the different random num-
ber seed every time. The Monte Carlo simulation repeatedly runs the proposed
algorithm to make sure the randomly initialized solutions could be uniformly
distributed. After multiple runs, we aggregate the final result by selecting the
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(a)

(b)

(c)

Fig. 7. An example to show the results after running the proposed direct minutiae
point matching algorithm for a right index finger. Also the SIFT matching result is
compared: (a) a single run result; (b) an aggregated result after multiple runs; and (c)
SIFT matching result.



146 J. Xu and J. Hu

repeatedly matched minutiae pairs. Compared with the results achieved by the
proposed algorithm, the feature point correspondence discovered by SIFT is
unreliable (the result is shown in Fig. 7(c)).

3.2 Minutiae Point Cloud Construction

The minutiae point cloud construction is based on the minutiae point correspon-
dence discovered in Sect. 3.1. To calculate minutiae points’ spatial coordinates
in 3D space, camera parameter matrix for the built-in camera in the 3D finger-
print imaging system is firstly necessary. Mathematically, the camera parameter
matrix can be denoted as follows.

C = K · M = K · [R, T ] (4)

where C stands for the camera parameter matrix. K is a 3 × 3 camera internal
parameter matrix, which can be obtained via camera calibration based on chess-
board testing. M ia a 3 × 3 camera external parameter matrix, which contains
two components: (i) camera pose matrix R (dimension 3 × 3); and (ii) camera
shift vector T (dimension 3 × 1). The camera pose matrix R is determined by
the camera’s rotations (θx, θy, θz) along x, y and z axis in 3D coordinate sys-
tem. The camera shift vector T = [Tx, Ty, Tz] is the bias apart from the origin
in 3D coordinate system. The values for (θx, θy, θz, Tx, Ty, Tz) are given by the
manufacturer of the used 3D fingerprint imaging system, therefore the camera
external parameter matrix M can be calculated.
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Fig. 8. An example to show the constructed 3D minutiae point cloud based on the cal-
culated camera parameter matrixes and the discovered minutiae point correspondence
in Fig. 7(b).
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Furthermore, given the camera parameter matrixes and the minutiae points
correspondence in Fig. 7(b), the minutiae points’ 3D coordinates can be com-
puted via triangulation reconstruction method. As an example, we demonstrate
the resultant 3D minutiae point cloud in Fig. 8.

4 Conclusion and Future Work

This paper proposes a novel minutiae point correspondence discovery strategy
based on differential evolution for 3D fingerprint imaging system. Such algo-
rithm can be adopted to align the minutiae point set in one view against the
point set in another one. As an alternative solution for tackling the feature point
level matching, this algorithm is able to produce reliable matching result, when
the SIFT-based matching approach cannot work at all. Furthermore, this algo-
rithm can solidly support the subsequent 3D minutiae cloud construction. The
effectiveness and superiority of the proposed algorithm are evidenced by the
experiments.

However, the proposed algorithm still needs to be further improved in the
following aspects: (i) the number of the matched minutiae pairs are still lim-
ited after taking Monte Carlo simulation; and (ii) the minutiae point matching
method in 3D space is in demand.
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