
Cross-Monotonic Game for Self-organized
Context-Aware Placement of Services

with Information Producers and Consumers

Manuel Osdoba(B) and Andreas Mitschele-Thiel

Integrated Communication Systems Group,
Technische Universität Ilmenau, Ilmenau, Germany

{manuel.osdoba,andreas.mitschele-thiel}@tu-ilmenau.de
http://www.tu-ilmenau.de/iks

Abstract. Deploying service instances in a network requires multiple
considerations. Firstly, an instance should be placed near clients that
need the service. Secondly, it should be in the centre of those clients.
Thirdly, the service provider himself should benefit from placing addi-
tional service instances.

We approximate problem one and two by a distributed auction. The
winners of the auction are agents that bid to join in a cost-sharing
scheme with cross-monotonic cost shares to solve problem three. Ser-
vice instances that have an appropriate number of clients that consume
may serve a context. Those with clients that are passive or mainly pro-
duce information may not serve the context because they can not pay
their cost shares and thus would not be beneficial to the service provider.
Clients of those instances (producers) are directly connected to the ser-
vice providers central server. Our algorithm fits well to services with a
regular consumer/producer ratio of 0.75/0.25.

Keywords: Service placement · Self-organization · Sparse knowledge ·
Multicast game · Facility location problem · K-mean/median-problem

1 Introduction

Resources in mobile networks are limited and the concurrent transfer of duplicate
data is a waste of resources. If the flood of information is big enough, every
network will suffer from the concurrent transfer of duplicate data. Therefore, it
is of use to replicate or cache data at distinct points in the network. However,
replicas introduce additional synchronization traffic to keep the different copies
consistent. As long as the content is not changed, no synchronization mechanism
is triggered. We call nodes that read data consumers. On the other hand, there
are nodes that alter/write data. Those are producers. Updated information is
assumed to be propagated through the entire network until all active instances
that store the information received it.

Nowadays algorithms replace static mechanisms and human intervention in
networks. A cloud infrastructure is usually controlled by central administrative
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

J. Cheng et al. (Eds.): GameNets 2016, LNICST 174, pp. 34–42, 2017.

DOI: 10.1007/978-3-319-47509-7 4

Cross-Monotonic Context-Aware Placement of Service Instances 35

entities that orchestrate an entire network. However, clouds as well as service-
and content delivery are also of relevance in wireless networks and in those net-
works, entities have sparse knowledge on the topology. That was our motivation
do develop a self-organized algorithm that deals with the challenges that were
stated in the abstract.

The paper is organized as follows. In Sect. 2, we study previous approaches
that influenced our mechanism. In the following part, our model and assump-
tions as as well as definitions on cost sharing games and requirements are given.
Section 3 deals with our cross-monotonic algorithm, which is evaluated in Sect. 5.
We conclude the results, shortcomings and advantages in Sect. 6.

2 Related Work

Our approach addresses two challenges in future networks. Service instances need
to be placed near clients that request the service. Usually, a service provider
analyzes the clients behavior and the decision where to place service instances is
based upon an offline optimization. There were several approaches that addressed
an online optimization of wireless (sensor) networks, like [11].

Games for Service Placement. In wireless networks, environmental factors need
to be monitored. For that purpose, Wu et al. [11] created a submodular game
that improves Quality of Monitoring. Once a wireless sensor node notices a lack
of monitoring, it solves a knapsack problem to find out, whether it has enough
resources to run an additional monitoring application. An appropriate per-node
utility function considers a neighbors allocation and maximizes the social welfare
that is measured by the quality of monitoring. Whenever a node changes its
strategy, it has to send its modified strategy to its neighbors.

Different kinds of facility location and k-Median problems were addressed
by Pál et al. in [8]. In their Single-Source Rent-or-Buy game, a strategy-proof
cost-sharing scheme was proposed. The edges of a Steiner tree are bought while
edges on the shortest path from a receiver to the Steiner tree are rented. Every
individual packet transfer along a rented edge has to be paid separately. The
costs that arise if an edge is bought, are shared among the receivers in the
Steiner component. Furthermore, their ghost-mechanism requires the receivers
to continuously fund a fraction of their cost shares to establish the Steiner tree.

The second challenge is to describe and identify the context of nodes.

Context-Awareness. Self-Optimization and Self-Configuration is an essential
functionality in the Internet of Things. Several things can share a context. In
[9] is described how the correlation among contexts can be measured. Jaffal
et al. [3] analyzed, in which way a context can be abstractly described to aid
in the design of pervasive systems. Najar et al. [5] elaborated on how a service,
that satisfies a clients intention in a given context, can be chosen. Especially
[1,6] analyze an architecture that includes contextual awareness as a factor in
deploying and designing services.

36 M. Osdoba and A. Mitschele-Thiel

3 System Model and Requirements

Data for consumers can be retrieved from the node that stores all data or at
lower cost (and lower delay) from a nearby service instance. If the data item
was previously retrieved, consumers get their information from a nearby service
instance and the retrieval from the central node can be omitted. A high cache hit
rate results in a decreased use of the connection to the central node. It increases
if it is likely that clients request same data and that is the case if those are
correlated. We see two ways to find out whether data is correlated.

Firstly, data can be partitioned. Hence, requests are correlated if clients
request data from the same partition. Secondly, for unpartitioned/unstructured
data, we use methods of big data and data analysis. The information, a client
is interested in can be put into a selector vector. It has to be staged by the
service/content provider (e.g. by formal concept analysis [3]) and is used by
the facilities to discriminate clients within the same context from those who
are not. The comparison of a selector vector with a client vector can be done
with the symmetric Kullback-Leibler- or symmetric Jensen-Shannon divergence
[1–3,5,6,9]. Matching a clients behavior to the selector vector may require deep
packet inspection on samples of the traffic. Furthermore, a candidate needs to be
aware of the clients profile in the service. These can be information consumers
or information providers. The occurring system costs are shown in Eq. 1

Ω(S ⊆ F, t) =
∑

v∈S

∑

c∈Cv

(rc(t) · (cost(Pc,s) − cost(Pc,v)) + wc(t)CSteiner) (1)

In Fig. 1, all clients have to retrieve their data from the central instance s. If
node u in Fig. 1 reads data, it incurs cost of

∑
e∈Pus

cost(e) = 18. If he acts as
an producer and writes to s, costs will be 18, equally. If the same scenario occurs
in Fig. 2, node u updates data that is distributed among the nodes that are col-
ored green, it incurs cost of 43. If another user requests the updated content,
the data is retrieved from the local instance. If �(40 − 15)/20� = 2 users in the

Fig. 1. Only one service instance
is active (=green): Configuration if
majority of operations is Write (Color
figure online)

Fig. 2. Several service instances are
activated (=green) and connected by
Multicast Tree: configuration if major-
ity of operations is Read (Color figure
online)

Cross-Monotonic Context-Aware Placement of Service Instances 37

lower right corner of the picture read the new content, costs are compensated.
Our approach suits networks in which nodes have sparse knowledge. Therefore,
centralized algorithms are inappropriate. To find nodes that are appropriate to
serve clients, the k-Median problem is approximated with best response dynam-
ics. If consumers and producers change their behavior, service instances adapt
accordingly. Consumers at a service instance compensate the costs that arise on
the reception of the updates. If the amount of consumers is too low, those costs
are not compensated and the instance stops serving that context. We optimize
both with a cost sharing scheme.

Definition 1 (Cost-Sharing Scheme [7]). A cost-sharing scheme is a function
ξ : A × 2A → R

+ ∪ {0} such that, for every S ⊂ A and every i �∈ S, ξ(i, S) = 0.

The value ξ(i, S) determines the cost shares of the agent i within the set S.
Usually an agent has an incentive to cover the costs it invests in cost shares. An
agents revenue/gain has to be greater than its investment in the cost shares. An
agent that can not cover its cost shares is pruned from the scheme, which is one
important mechanism to achieve the following property of our game.

Definition 2 (Cross-Monotonicity [7]). A cost-sharing scheme ξ is cross-
monotonic if for all S, T ⊆ A and i ∈ S, ξ(i, S) ≥ ξ(i, S ∪ T).

Cross-monotonicity is also known under the term population monotonic [10].
The set of participating agents increases while the cost shares decrease. An
agents cost share may not rise even if additional agents join in. An equivalent
argument for cross-monotonicity is ξ(i, S) ≥ ξ(i, S′) for all S ⊆ S′. Therefore
cross-monotonicity stimulates other agents to join. Cost sharing schemes should
provide further import characteristics like competitiveness and cost recovery.

Definition 3 (Competitiveness [8]).
∑

i∈S

ξ(S, i) ≤ c∗(S) and assures that the

participating agents are not charged more than the true cost c∗(S).

If competitiveness is not assured, there would be the possibility, that some
other agent could offer the service at lower cost. The following term is also known
as weak budget-balance.

Definition 4 (Cost Recovery [8]).
∑

i∈S

ξ(i, S) ≥ c∗(S) and assures that the

costs are recovered.

Our game is cross-monotonic and recovers the cost of the update distribution.

4 Cross-Monotonic Semi-cost Recovering Game

A game is a triple of (A,S, uv) with agents A, a strategyspace S and a revenue
function uv for node v. As mentioned in the previous section, the agents are

38 M. Osdoba and A. Mitschele-Thiel

the available facilities that can host an instance of the service. The strategy, an
agent may choose from, is defined as follows:

S =
{
2C × R × B

}

An agent vs strategy for k correlated sets is s = (C ′ ⊆ Cv, b, a)k ∈ Sk. In s, C ′

represents the correlated clients of a context that are near node v, b is the nodes
bid to serve the client set C ′ and a is true if the clients read/write ratio fulfills
Eq. 2 and therefore, the instance is efficient in decreasing the value of Eq. 1. In
Eq. 2, value αv(S, i, t) denotes the agents cost-shares that have to be paid at every
reception of an update in context i and is depicted in Eq. 4. Agent vs strategy for
k correlated sets is s =

(
(C ′

0 ⊆ Cv, b0, a0), . . . , (C ′
k−1 ⊆ Cv, bk−1, ak−1)

) ∈ Sk.
The available contexts inside the network are denoted by K.

∑

c∈C′

t+τ∫

t

rc(t) · (cost(Pc,s) − cost(Pc,v)dt >
∑

c∈C′\Cv

t+τ∫

t

wc(t) · αv(S)dt (2)

Algorithm 1 runs on every agent v ∈ A. Per correlated set of clients (line 2),
a node determines its median distance to the clients (line 3). The nodes bid
value b to serve the clients is computed with a Gaussian. We choose μ = 0 and
σ = |Cv| (line 3). The argument of the Gaussian is calculated as depicted in
line 4. Several approaches to the Facility Location Problem (e.g. [8]) construct
a ball around the facilities or clients. At the intersection point of several balls, a
facility is opened. In this approach, the facilities are agents.

A node estimates its maximum cost shares within a context with Eq. 3.
C : K → C represents the clients within the context.

Bv(i, t) =
∑

c∈(C(i)∩Cv)

rc(t) · cost(Pc,s − Pc,v) (3)

Node v sends its bid Bv(i, t) to serve context i to the central instance. At this
point, we use scheme [7, Sect. 14.2.2, p. 367]. The central service instance decides
whether the offered bid covers the cost to integrate node v into the Multicast
tree. It is handled that way because we expect the central instance to know
about the current read/write ratio in context i. Node vs cost shares that were
determined by the referenced scheme are depicted in Eq. 4. Here, ST(i), i ∈ K is
the current multicast tree of the service instances that serve context i.

αv(S, i, t) = min
w∈ST (i)

{
cost(Pv,s), cost(Pv,w) + costST (i)

(
PST (i)

w,s

)}
(4)

Every service instance is charged the cost shares αv(S, i, t) (Eq. 4) per received
update. The path of node w to s in the Multicast tree is denoted as PST

w,s and
the proportionate cost of node w as costST . The cost shares αv(S, i, t) are cross-
monotonic (Definition 2) if the triangle inequality holds. Furthermore, the mech-
anism in line 10 ascertains that the recovery of the cost of propagating the
updates (Definition 4) can not be violated longer than for time τ .

Cross-Monotonic Context-Aware Placement of Service Instances 39

1 if Received strategy s′ or topology change or consumer/producer change then
2 for C′ ∈ correlated sets(v) do
3 m ← median

c∈C′ d(c, v); σ ← |C′|;
4 δ ← ∑

c∈C′
(m − d(c, v));

5 b ←√|C′| · e
−δ2

2σ2 − ρ + r;
6 s ← (C′, b, False);
7 if b > 0 or b > bs′ then
8 if strategy s changes then
9 Send s to neighbors; sleep(θ);

10 if Eq. 2 holds then
11 Connect all c ∈ C′ to v
12 else
13 ∅-Strategy
14 end

15 end

16 else
17 ∅-Strategy
18 end

19 end

20 end

Algorithm 1. Best response mechanism for node v

5 Evaluation

For evaluation, we investigated different consumer/producer profiles.

Simulation Setup. The simulations were implemented in Python with SciPy,
NumPy and SimPy. For the computation of the Steiner tree among the active
facilities, we used the submodular function optimizer library [4]. User operations
follow a Poisson process. Each of the 80 clients executes a read or write operation
with distinct probabilities. Exact pairs of read/write ratios are shown on the x-
axis in Fig. 3. All users are homogeneous, meaning all users have a common
read/write-ratio and Poisson arrival rate of 2. A node may change an item if
it has previously read it. The performance is stable regarding the number of
requested items or number of operations per time slot.

Results. Figure 3 shows that in the range of read/write ratios between 0.05/0.95
and 0.35/0.65, the cost of the single-server (=blue) and multi-server configura-
tion (=red) rise fast. An item has to be read before it can be changed. Therefore,
write cost follow read and are upper bounded by the read cost in the single-server
case. That is not the case in the multi-server solution. If an item is already avail-
able at the service instance a client is connected to, the item is retrieved from
the local instance. An item is not available at a local service instance if no client

40 M. Osdoba and A. Mitschele-Thiel

Fig. 3. Cost for different read/write profiles (Color figure online)

previously read it or no other client in the same context inside the entire net-
work changed it. If another client would have changed it, the update was propa-
gated. In our simulation, the multi-server cost are clearly above the single-server
approach in the range of read/write ratios between 0.35/0.65 to 0.5/0.5. From
0.5/0.5, the multi-server system cost decrease. At the ratio 0.75/0.25, our self-
organized system has its optimal working point. Prior to the working point, line
10 in Algorithm 1 assures cost slightly above the single-server approach. Until
ratio 0.6/0.4, Algorithm1 enforces the single-server solution. Winners of the dis-
tributed auction to serve the context can not afford the cost shares. Therefore,
clients request and write data directly to the single server. After that break-even
point, service instances start from being able to pay their cost shares to receive
updates and our mechanism causes the convergence to the multi-server config-
uration. At the working point, the service can be delivered at the same cost
a single-server approach would have. However, the users have a lower latency.
After the break-even point, multi-server configuration outruns the single-server
approach.

Though, at the ratio 0.6/0.4, our algorithm violates the cost-recovery prop-
erty for time τ . That is a disadvantage for service instances with a low number
of clients. Those easily run in the situation where they can not cover their cost
shares anymore. The mechanism in Algorithm 1, line 10 shuts down those service
instances. Their revenue function stabilized at read/write ratios of 0.75/0.25.
Therefore, our self-organized algorithm fits well to services, that regularly have
75% consumers and 25% producers.

Cross-Monotonic Context-Aware Placement of Service Instances 41

6 Conclusion

This paper presents a cross-monotonic cost sharing scheme that solves the Ser-
vice Placement Problem with information producers and information consumers.
It is applicable for wireless as well as for IoT infrastructures. Our approach trans-
forms a global cost function (Eq. 1) into a local optimization problem (Eq. 2)
that is optimized by a self-organized algorithm. Thus, our algorithm runs and
decides in each node solely based on local knowledge. Our approach shows a
favorable working point at a read/write ratio of 0.75/0.25. The service can be
delivered at the same cost a single-server approach achieves while the transfer
of the up-to-date data is achieved at a considerably lower delay.

Self-organized systems benefit from cross-monotonic cost-sharing schemes.
Cross-monotonicity assures that newly entering agents can not increase the cost
shares of other nodes. That makes it ideal for service providers because a joining
agent can not increase the cost shares of other agents. Our mechanism auto-
matically shuts down entities that suffer from a lack of consumers and therefore
provides an efficient mechanism in dealing with an unbalance between informa-
tion consumers and information providers. It is a derivate of the cross-monotonic
Multicast Game. However, an agents revenue changes over time and if the rev-
enue becomes negative, our mechanism shuts down the agent. The mechanism
allows agents to violate the cost-recovery property for a time τ .

In our future work, we will give proof on the competitiveness and α-cost-
recovery in dependence of τ and real-world client-profiles. Furthermore, we will
compare our scheme to connected facility location algorithms that perform an
offline optimization. Additionally, the bidding mechanism for the approximation
of the K-Median problem has to be compared to Pál et al. [8] Primal/Dual
mechanism.

References

1. Bauer, C., Dey, A.K.: Considering context in the design of intelligent systems:
current practices and suggestions for improvement. J. Syst. Softw. 112, 26–47
(2016)

2. Jaffal, A., Kirsch-Pinheiro, M., Le Grand, B.: Unified and conceptual context
analysis in ubiquitous environments. In: International Academy, Research, and
Industry Association (IARIA), vol. 8, pp. 48–55 (2014)

3. Jaffal, A., Le Grand, B., Kirsch-Pinheiro, M.: Refinement strategies for correlating
context and user behavior in pervasive information systems. Procedia Comput. Sci.
52, 1040–1046 (2015)

4. Krause, A.: Submodular function optimization (2008). https://las.inf.ethz.ch/sfo/
5. Najar, S., Pinheiro, M.K., Souveyet, C.: Service discovery and prediction on per-

vasive information system. J. Ambient Intell. Hum. Comput. 6(4), 407–423 (2015)
6. Naqvi, S.N.Z., Ramakrishnan, A., Preuveneers, D., Berbers, Y.: Walking in the

clouds: deployment and performance trade-offs of smart mobile applications for
intelligent environments. In: International Conference on Intelligent Environments
(IE13), 16–19 July 2013, Athens, Greece (2013)

https://las.inf.ethz.ch/sfo/

42 M. Osdoba and A. Mitschele-Thiel

7. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, New York (2007)

8. Pál, M., Tardos, É.: Group strategy proof mechanisms via primal-dual algorithms.
In: 44th Symposium on Foundations of Computer Science (FOCS 2003), Proceed-
ings, 11–14 October 2003, Cambridge, MA, USA, pp. 584–593 (2003)

9. Ramakrishnan, A., Preuveneers, D., Berbers, Y.: Enabling self-learning in dynamic
and open IOT environments. Procedia Comput. Sci. 32, 207–214 (2014)

10. Tazari, S.: Cross-monotonic cost-sharing schemes for combinatorial optimization
games: a survey: course Project, CPSC 532A Multiagent Systems. University of
British Columbia, Vancouver, Canada (2005)

11. Wu, C., Xu, Y., Chen, Y., Lu, C.: Submodular game for distributed application
allocation in shared sensor networks. In: Proceedings of the IEEE INFOCOM 2012,
25–30 March 2012, Orlando, FL, USA, pp. 127–135 (2012)

	Cross-Monotonic Game for Self-organized Context-Aware Placement of Services with Information Producers and Consumers
	1 Introduction
	2 Related Work
	3 System Model and Requirements
	4 Cross-Monotonic Semi-cost Recovering Game
	5 Evaluation
	6 Conclusion
	References

