
Virtualbricks for DTN Satellite
Communications Research and Education

Pietrofrancesco Apollonio1, Carlo Caini1(&), Marco Giusti1,
and Daniele Lacamera2

1 DEI-ARCES, University of Bologna, Bologna, Italy
f.apollonio@ldlabs.org, carlo.caini@unibo.it,

marco.giusti3@studio.unibo.it
2 TASS Technology Solutions, Leuven, Belgium

daniele.lacamera@tass.be

Abstract. Virtualbricks is a virtualization solution for GNU/Linux platforms
developed by the authors and included in Debian. The paper aims to show its
potential, referring to version 1.0, just released, when applied to both research
and education on DTN satellite communications. In brief, Virtualbricks is a
frontend for the management of Qemu/KVM Virtual Machines (VMs) and VDE
virtualized network devices (switches, channel emulators, etc.). It can be used to
manage either isolated VMs, or testbeds consisting of many VMs interconnected
by VDE elements. Among the wide variety of possible applications, with or
without VM interconnections, the focus here is on the development of a virtual
testbed on DTN satellite communications, a task for which Virtualbricks was
especially designed. After having introduced the main characteristics of Virtu-
albricks, in the paper we will show how to set-up a Virtualbricks testbed, taking
as an example a testbed recently used by the authors to investigate Moon
communications through orbiters. The validity of Virtualbricks results is con-
firmed by comparison with results achieved on a real testbed, set-up for this
purpose. The same testbed has also been successfully used for educational
purposes at the University of Bologna.

Keywords: Testbed virtualization � DTN � Satellite communications � KVM �
Qemu � VDE

1 Introduction

Several complete solutions for virtualization management have been developed to
simplify design, configuration and management of Virtual Machines (VMs). Currently
available virtualization management tools include proprietary suites like VMware® [1],
Microsoft® SCVMM [2], Paragon® VM [3], SolarWinds® [4] and many more. Other
solutions are based on Free or Open Source software and in particular on the use of the
Kernel based Virtual Machine (KVM) [5], which is now part of the Linux kernel.
Unfortunately, none of these solutions focuses on the design and management of
complex network layouts, as they were created for cloud management and the virtu-
alization of enterprise server farms does not usually require complex topologies.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
I. Bisio (Ed.): PSATS 2014, LNICST 148, pp. 76–88, 2016.
DOI: 10.1007/978-3-319-47081-8_7

There are few examples in the literature that exploit virtualization technologies to
provide virtual equivalent of testbed components, like routers and switches. The most
advanced is possibly provided by Marionnet [6, 7]. Marionnet uses Virtual Distributed
Ethernet (VDE) [8, 9], to emulate the network infrastructure needed to interconnect the
VMs in complex networks. Unfortunately, Marionnet is mostly intended for educa-
tional purposes and the design choice to implement VMs via User-mode Linux
(UML) [10] greatly penalizes performance. A different approach to build network
testbeds is followed by Mininet [11], which allows the user to run a collection of
end-hosts, switches, routers, and links on a single Linux kernel. It uses lightweight
virtualization to make a single system look like a complete network, running the same
kernel, system, and user code. It is however a powerful network emulator, not a VM
manager. In particular, its nodes do not run independent OSs and must share the file
system of the host.

Since we found no existing solutions that would meet our requirements, we started
the development of Virtualbricks [12], with the aim of creating a virtualization man-
agement tool focused on network design. Virtualbricks relies on Qemu [13], KVM and
VDE; it is released under the GNU General Public License version 2 and has been
included in the GNU/Linux Debian distribution. The paper refers to the version 1.0, just
released, which implied an in-depth redesign of many part of the code to improve
stability and add new significant features. Virtualbricks stems from the fusion of
Qemulator, a front-end for Qemu, and Virtual NetManager, a project previously
developed by the authors. The aim of the project is to provide an easy interface not only
for VMmanagement, but also for virtual network design. Although not exclusive, one of
the most significant applications is the virtualization of real testbeds, such as those used
by the authors [14] to evaluate TCP and DTN (Delay-/Disruption- Tolerant Networking)
protocols in challenged networks [15]. As well as for research, Virtualbricks has a great
potential also as an educational tool, as it allows students to build a complete networking
testbed on their own PCs. Many new features introduced in the release 1.0 derive from
the practical experience gained by the use of release1.0 beta versions in the LAB
activities of a TLC Engineering Master course of the University of Bologna [16].

This paper aims to present the main features of Virtualbricks seen from the user
point of view. Although many applications do not require VM interconnections, here the
focus is on the development of a virtual testbed for scientific research on satellite DTN
communications, a task for which Virtualbricks was especially designed. To this end,
after a general description of Virtualbricks, the steps necessary to build the virtual
testbed that was used by the authors in [17] are presented. The accuracy of Virtualbricks
results will be then validated by comparisons with those achievable with a real testbed,
expressly built up for this purpose. It is however worth stressing that Virtualbricks is a
front-end, thus performance achievable (in terms of accuracy and speed) is the same as
that achievable by its components, KVM or Qemu for VMs, and VDE for virtual
network devices. The advantages of Virtualbricks stem from the integration of these
components in a flexible and powerful interface. For example, a complete testbed
consisting of many interconnected VMs, with their own file systems, can be saved in just
one tar file and exported to other PCs or made available for download on a web site.

Virtualbricks for DTN Satellite Communications Research and Education 77

2 Virtualbricks General Description: “Main” Window
and “Bricks”

In this section we will first examine the Virtualbricks main window, to give a general
idea of Virtualbricks features; then we will focus on the “bricks”, i.e. the VMs and the
VDE elements that are at the core of each project, and on their configuration.

2.1 “Main” Window

The Main window is the operating centre of Virtualbricks. There are five different
pages and several command menus (Fig. 1). “Bricks” is the first page and, once
selected, it shows an icon for each brick of the current project. A new brick can be
added by pressing the “New brick” button and then by selecting the wanted brick from
the selection page (Fig. 2).

Once selected, an existing brick can be powered on/off, configured, deleted and
renamed. The second page of the main window is “Events”. It is used to set commands
(e.g. a script) that can be executed by Virtualbricks in an autonomous way. The third
page, “Running”, lists the running bricks. As in the first page, a number of operations
can be performed on the brick selected (opening and closing the configuration terminal,
sending ACPI signals, killing processes, etc.). The “Topology” page shows an

Fig. 1. The Home window of Virtualbricks.

78 P. Apollonio et al.

interactive image of the entire topology, which can be useful for visually checking the
brick connections. The topology layout can also be exported as an image file. The latest
page “Readme”, allows either reading or writing comments on the testbed. It can be
useful when a testbed is distributed to other researchers or to students.

Virtualbricks supports two kinds of virtual machines: Qemu and KVM. Qemu [13]
is a processor emulator and supports a large variety of guest OS, including those built
for CPU architectures that differs from that of the host machine. KVM [5] is a virtu-
alization solution for x86 processors based on hardware virtualization technologies
(Intel Virtualization Technologies® and AMD-Virtualization®). The full virtualization
approach of KVM, when compared to CPU emulators, offers many advantages in terms
of guest performance and access to paravirtualized devices, such as virtual disks and
virtual Ethernet tools. Moreover, scalability is greatly improved by the joint use of
KVM and Kernel Samepage Merging (KSM) [18], a Linux feature that combines
multiple identical memory pages that are in use by different processes into a single
physical RAM page (“overcommit” feature). On the other hand, KVM needs a CPU
with the virtualization extensions and does not support binary translation [19]. Due to
their superior performance, KVM is generally preferable whenever there is no need to
emulate a different architecture.

2.2 VM Brick Configuration

The VM brick configuration panel can be opened by clicking on the brick with the right
mouse button and selecting “Configure”. The VM configuration options are grouped
into different pages, each representing a different section. The “Drives” page (Fig. 3)
enables the configuration of all the block devices, in the form of either virtual disk
images or direct access to host peripherals such as CD-ROMs. Disk images cannot be
used concurrently with write-on permission by more than one VM, to avoid the cor-
ruption of image content. To circumvent this problem, Virtualbricks stores local images
in a database. Virtual disk images can be managed directly from Virtualbricks. In
particular, a differential disk image can be used by checking the “Private Cow” box.

Fig. 2. The Brick selection page of Virtualbricks.

Virtualbricks for DTN Satellite Communications Research and Education 79

This enables the use of only one single image for all VMs, thus greatly improving the
consistency and the dimension of the project. Cow files are used in this case only to
save machine dependent configurations. Another important check box is “Snapshot
Mode”. If checked, no changes are saved when the VMs are switched off, which can be
useful in an educational Lab or when new software is tested.

The “System” page (Fig. 4) contains all the settings related to the VM hardware
abstraction. If KVM is checked, KVM instead of QEMU is used and the menu for the
selection of the guest machine architecture is disabled, as the only possible architecture is
that of the host. The amount of RAM available must be specified in the “RAM” field. In
the “Display options” section, it is possible to choose whether and how a virtual monitor
should be generated. By default (no check box selected), a new window with a text
terminal interface is created. Other options are “Disable graphical output”, or “Start in
VNC server”, which creates a new VNC server process on a standard VNC display port,
identified by the number specified in the text area. Among the other options in the same
page, there is the possibility to synchronize the VM clock with that of the host, a feature
that is very useful in dealing with the evaluation of time sensitive protocols, like TCP.

The “Network” page is used to add, remove, configure and interconnect the NIC
interfaces. Finally, the “Customize Linux Boot” page is normally used only to debug a
Linux kernel running on the guest.

2.3 VDE Bricks

VDE is an Ethernet compliant virtual network designed to interconnect VMs and real
computers in the same Local Area Network (LAN) [8, 9]. It consists of many inde-
pendent tools, such as switches, channel emulators, tap devices, tunnel servers and
clients, etc., running on the host. It must be stressed that, like Qemu and KVM, VDE is
a software package independent form Virtualbricks. Once VDE is installed on the host,
Virtualbricks offers the user a GUI to manage VDE tools, seen as “VDE bricks”, and

Fig. 3. The Drives configuration page of a VM brick.

80 P. Apollonio et al.

thus the possibility to interconnect VMs in many ways. This paves the way to the
building of complex testbed layouts, which is what really differentiates Virtualbricks
from all other VM management platforms. Of course, as in all virtual testbeds, there
will be stringent limits to the maximum bandwidth of VDE tools supported, due to host
hardware, CPU load and to the VDE software itself. However, as bandwidths of a few
tenths of Mbit/s can be reached, there are plenty of possible applications, except the
emulation of high-speed networks.

As in a real Ethernet, the most important tool is the VDE Switch, which emulates a
real switch and is the most common way of interconnecting other VMs or VDE bricks.
Moreover, by means of a VDE Tap brick, which provides the abstraction of an Ethernet
device on the host machine, it is possible to connect the host to the switch, thus
enabling the creation of a variety of hybrid testbeds: many VMs plus the host, dis-
tributed virtual testbeds, a virtual testbed linked to a real network through its host, etc.
Alternatively, it is also possible to start a VDE Switch on the host independently from
Virtualbricks and connect a Switchwrapper brick to it. This is the solution preferred by
the authors to have remote access to the VMs by SSH (Secure SHell), which is very
useful especially if the virtual testbed runs on a remote host. Another essential tool in
networking evaluations is the VDE Wirefilter, usually inserted between two switches.
Despite its name, it is a channel emulator. Like channel emulators on real machines,
e.g. NistNet, Dummynet etc., it aims to reproduce the characteristics of a real wired or
radio link, by making it possible to add packet delays, losses, bandwidth limitation,
random duplication of packets, MTU restrictions and even the random flipping of
single bits. It also supports asymmetrical channels. In Virtualbricks 1.0, however, we
use an enhanced version of it, called Netemu, with increased reliability, not included in
VDE (it can be downloaded by our web site). This is just a temporary solution in view

Fig. 4. The System configuration page of a VM brick

Virtualbricks for DTN Satellite Communications Research and Education 81

of the release of next enhanced versions of VDE. Another brick is the VDE Tunnel
(client and server), which allows two virtual testbeds, on two different host machines,
to communicate on a blowfish encrypted channel, by the VDE tool Cryptcab.

2.4 VDE Brick Configurations

VDE bricks can be configured in two alternative ways: graphical, from a simple
configuration interface provided by Virtualbricks (see for example the configuration
page of Netemu in Fig. 5), or textual, by entering the VDE configuration commands
with the usual syntax from the control console of the brick. In the former case, GUIs
can be opened as for VM bricks, by selecting a brick in the “Bricks” page of the home
window, pressing the right mouse button and selecting “Configure”. The alternative
configuration terminal can vice versa be opened by selecting a brick in the “Running”
page of the home window, pressing the right mouse button and selecting “Open
Control Monitor”. Note that once opened, it must be closed by clicking on the close
window check box (be careful because entering the “exit” command does not close the
window but switches off the brick). This textual configuration mode is preserved in
Virtualbricks to allow advanced users already familiar with VDE commands to con-
tinue to use VDE syntax, which is less intuitive but sometimes more powerful than
GUIs.

3 Building a Virtual Testbed: DTN Satellite Communications
in Space

One of the most important advantages of Virtualbricks over a real testbed is that it is
possible to change the testbed layout simply by opening a different project. From the
“File” menu it is possible to open an existing project file, create a new one, change the
name of the current project, export the entire project (included VMs file systems) into
just one file, or vice versa to import a project from a file. These features result into an
extraordinary flexibility and easiness to use, for both research and education purposes.
Since in virtual testbeds the available processing power of the host machine is a critical
factor, as it limits performance, in Virtualbricks only one project can be opened at a
time and only one Virtualbrick instance can be run on the same host.

Fig. 5. The configuration page of Netemu brick.

82 P. Apollonio et al.

Let us now introduce as an example the virtual testbed used in [17], to some extent
inspired by the ESMO (European Student Moon Orbiter) ESA mission [20]. Its logical
layout is shown in Fig. 6.

3.1 Brick Selection

To build it, we have to open a new project, which will call ESMO. Then we need to
select the bricks. As the topology consists of five DTN nodes, we need five VM bricks.
The fastest way to do this is to create a new VM, configure it, then clone it four times.
Minor adjustments to the VMs, such as NIC connections, can be done after inserting
the necessary VDE bricks into the project. As the two satellite links between the ESMO
satellite, which orbits around the Moon, and the two ground stations (MCC and
Gateway) are characterized by long propagation delays and possible random losses,
their emulation requires the use of two intermediate Netemu bricks. All other links are

Fig. 6. The logical topology of the ESMO testbed.

Fig. 7. The Virtualbricks topology of the ESMO testbed.

Virtualbricks for DTN Satellite Communications Research and Education 83

considered ideal. As direct connections are not possible, VDE Switches are necessary
to connect VMs to each other, or a VM to a Netemu brick, thus leading to the
Virtualbricks topology shown in Fig. 7.

The five VM bricks will have the same hardware and software configuration, as
they are the clones of the same prototype: KVM, with 256 MB RAM, no CD, one hard
disk, the same image including the OS and the DTN protocols to be tested, private
cows and time alignment with the host (Figs. 3 and 4).

3.2 Brick Connections

In VDE the primary connection element is the VDE Switch, because it is the only brick
that has the necessary sockets to connect the plugs of all the other bricks. We can start
by connecting the VDE Netemu bricks (and other VDE bricks, if present) to the
appropriate switches, by indicating the left and the right switch from the “Plugs” page
of the Netemu configuration GUI (Fig. 5). Then, VMs must be connected to the
switches. To this end, one NIC must first be created for each connection, through the
“Network” page of the VM configuration GUI. Here three parameters must be set: the
name of the switch to be connected to, the virtual NIC model and the MAC address.
Regarding NICs models, note that the emulation of a real NIC is often partial. For
example, the 10/100 Mbit/s NICs do not actually perform any bandwidth reduction,
which can be misleading. The MAC address can be inserted either at random or
manually. Parameters can of course be changed later, whenever necessary.

3.3 IP Address Assignment

Although in theory the IP address assignment in a virtual testbed is the same as in a real
testbed, in practice there are some aspects that deserve to be discussed, to better
highlight the scope of Virtualbricks.

In a real testbed the IP address of each machine is usually assigned (at least the first
time) from a terminal (i.e. by a user working with a keyboard and a display directly
connected to machine). The same could be done in Virtualbricks from VM consoles,
once activated from the VM configuration GUI. In practice, when Virtualbricks is
operated remotely through a VNC client this solution is impaired by translation
problems of characters or difficulty in keeping the mouse control. An apparently simple
solution could be to let the user assign the IP address directly from the VM “Network”
configuration, as is done for the MAC address. However, it should be remembered that
the software configuration of VMs is beyond the scope of Virtualbricks. This is not just
a theoretical objection but also a practical one. In fact, all OSs allow the setting of the
IP address, but the syntax is different. While the host machine has to run a GNU/Linux
(this OS is required to run Virtualbricks), VMs do not.

A possible solution consists in building a control network independent of the
experimental links. To this end, in our ESMO testbed we added an additional NIC
(eth0) on each guest, with an IP address assigned by a DHCP server on the host. The
connection between these NICs and the host is achieved by means of a Switchwrapper

84 P. Apollonio et al.

brick connected to a VDE Switch running on the host. This control network offers an
easy access to all VMs by SSH as soon as they are created, from either the host or
whatever node on Internet (provided that the host itself is on Internet, of course).
Moreover, this control network is also very useful when experiments are carried out, as
it provides the user with a parallel access system independent of the network under
study, thus avoiding any possible interference.

4 Virtual vs. Real Testbed: Validation of Virtual Results

As Virtualbricks is a frontend for Qemu/KVM and VDE, the accuracy of its results
actually depends on the reliability of these two components. An in-depth assessment of
these was previously carried out by the authors in [21, 22] and would be beyond the
scope of the present paper. However, for the sake of completeness, let us present a brief
comparison between some results presented in [17], obtained with the Virtualbricks
testbed described here, and those achievable by a real equivalent. A selection of Vir-
tualbricks results from Fig. 7 of [17] is given in Fig. 8. The aim of the experiment was
to assess the ability of ION CGR (Contact Graph Routing) [23], a DTN routing
protocol designed by NASA for scheduled intermittent connectivity, to take the right
decisions in the presence of parallel paths. Here from ESMO Sat to MCC, the routing
alternative is either via the Gateway or directly to MCC. To this end, ten bundles [15]
are first generated and taken into custody [14] on the Lander; when the first Lander-Sat
contact starts, at 20 s, the first six are transferred to Sat and taken in custody; they are
then delivered to MCC via Gateway when the Sat-GW contact opens, at 70 s; the other
4 bundles are transferred to Sat when the second Lander-Sat contact starts, at 100 s;
then they are directly delivered to MCC when the Sat-MCC contact begins, at 150 s.

To replicate the test on a real testbed, we have set-up a real equivalent, consisting of
7 GNU/Linux machines (one for each VM, plus two for the channel emulators),
running exactly the same code. Results are reported as x-crosses for comparison. The
accuracy of the results achieved on the virtual testbed is evident, thus confirming once
again that virtualization technologies can be used to carry out experiments on DTN
satellite networking, where transmission rates are relatively low and in line with the
present limits of virtualized links.

Of course, the higher the Tx rates and the higher the number of VMs, the higher the
chances of reaching the limits of virtualization. For this reason, we do not suggest using
virtualization technologies for high speed networks; we do however deem virtualiza-
tion a perfect match for satellite communication in general, because of low Tx rates,
and with DTN in particular, because of both low Tx rates and link intermittency. The
unavailability of many links for relatively long periods, typical of most DTN envi-
ronments, including LEO sat communications and deep space networks, results in
intermittent use of VMs, i.e. in a lower computational load for the host machine. In
other words, the processing power of the host CPU is shared only by the fraction of
active VMs, which can be small even in a large testbed.

Virtualbricks for DTN Satellite Communications Research and Education 85

5 Research and Education with Virtualbricks

The testbed shown in the previous section was successfully used with minimal mod-
ifications in further research on Moon communications [24] and in LAB activities of
the course [16]. Other Virtualbricks testbeds were used to develop and test DTNperf_3
[25], and more recently to carry out joint research on DTN routing with SPICE center
of Democritus University of Trace (Greece). This clearly proved the potential of the
tool for both research and education.

For fairness, we also remember the limits of virtualization. They consist in the
unfeasibility of carrying out high-speed tests and in software maintenance, which is
only apparently the same as in a real testbed. In fact, the possibility to “buy” unlimited
VMs at no cost, may lead to the unnecessary proliferation of testbeds, whose software
maintenance requires the same effort of their real equivalents (e.g. for updating OS or
applications). The informed user, aware of this risk, will easily avoid the problem.

For the reader convenience, let us conclude this section by listing the advantages
provided by Virtualbricks in both research and education.

5.1 Research

• Reduced TCO (total cost of ownership): no need to buy dedicated hardware.
• Use of real protocol stacks, by contrast to network simulators.
• Very good performance by using KVM for VMs, by contrast to emulators; alter-

natively, high flexibility in the CPU architecture choice by using Qemu.

0
1
2
3
4
5
6
7
8
9

10
11

0 50 100 150

B
un

dl
e

#

Time elapsed (s)

Custody on Lander
Custody on Sat
Delivered (via GW)
Delivered (directly to MCC)
Lander-Sat
Sat-GW
Sat-MCC

Fig. 8. Bundle transfer from Lander to User. Markers: Virtualbricks; x-crosses: real testbed;
segments at the bottom: contact windows.

86 P. Apollonio et al.

• Perfect results reproducibility: as a Virtualbricks testbed is software defined, two
independent research team can actually work on the very same testbed and found
the very same results.

• Increased productivity: no more one real testbed to be time-shared among many
researchers of the same team, but independent testbeds to be used in parallel.

5.2 Education

• Reduced cost: no need of dedicated LABs.
• Increased teacher productivity: no need to maintain/update/change the configuration

of a real testbed; no need to organize testbed remote access and sharing among the
students.

• Easy installation: Virtualbricks is in Debian and can be installed with the usual
commands (apt-get install Virtualbricks). Note, however, that at present ver.1.0, just
released, must be downloaded from [12].

• No need to set-up testbeds: once installed Virtualbricks, it is easy to import
pre-configured testbeds provided by the teacher.

• No more one testbed fits all: a set of pre-configured testbeds (e.g. one different
testbed for each LAB activity) can be downloaded by students from a course web
site and easily imported into Virtualbricks.

• Increased student productivity and freedom; students can focus their attention on the
aim of the LAB activity, without being distracted by the many practical problems
related to the remote access and time-sharing of a physical testbed; the presence of a
testbed in their own PC allows students to replicate LAB activities at home, or to
carry out their own experiments, at their will.

6 Conclusions

In the paper the main features of Virtualbricks have been presented. This virtualization
solution for Linux differs from others because of the support not only of VMs (Qemu
and KVM), but also of VDE tools, which makes Virtualbricks particularly useful for
designing and managing testbeds consisting of multiple interconnected VMs. For this
reason, in the description of Virtualbricks the virtual testbed used by the authors in
recent research on DTN satellite communications has been considered, as a real
application example. The comparison of Virtualbricks results with those achievable
with an equivalent real testbed, has shown an excellent level of accuracy, thus con-
firming the suitability of the virtualization approach for both DTN satellite commu-
nication research and education.

Virtualbricks for DTN Satellite Communications Research and Education 87

References

1. VMware. http://www.vmware.com
2. SCVMM. http://www.microsoft.com/en-us/server-cloud/system-center/virtual-machine-

manager.aspx
3. Paragon VM. http://www.paragon-software.com/home/vm-professional/
4. SolarWind. http://www.solarwinds.com/
5. KVM. http://www.linux-kvm.org/page/Main_Page
6. Loddo, J., Saiu, L.: Status report: Marionnet - how to implement a virtual network laboratory

in six months and be happy. In: Proceedings of the ACM SIGPLAN Workshop on ML,
pp. 59–70. ACM Press, New York (2007)

7. Loddo, J., Saiu, L.: Marionnet: a virtual network laboratory and simulation tool. In:
SimulationWorks, Marseille, France (2008)

8. Davoli, R.: VDE: virtual distributed ethernet. In: Proceedings of ICST/Create-Net
Tridentcom 2005, Trento, Italy, pp. 213–220, May 2005

9. VDE. http://vde.sourceforge.net/
10. UML. http://user-mode-linux.sourceforge.net/
11. Mininet. https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
12. Virtualbricks. https://launchpad.net/virtualbrick
13. Qemu. http://wiki.qemu.org/Main_Page
14. Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant

networking (DTN): an alternative solution for future satellite networking applications. Proc.
IEEE 99(11), 1980–1997 (2011)

15. Cerf, V., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-Tolerant
Networking Architecture. Internet RFC 4838, April 2007

16. TLC Master course on Architectures and Protocols for Space Networks. http://www.
engineeringarchitecture.unibo.it/en/programmes/course-unit-catalogue/course-unit/2013/
386378

17. Caini, C., Fiore, V.: Moon to Earth DTN communications through lunar relay satellites. In:
Proceedings of ASMS 2012, Baiona, Spain, pp. 89–95, September 2012

18. KSM. http://www.linux-kvm.org/page/KSM
19. Binary Translation. http://en.wikipedia.org/wiki/Binary_translation
20. ESMO. http://www.esa.int/esaMI/Education/SEML0MPR4CF_0.html
21. Caini, C., Davoli, R., Firrincieli, R., Lacamera, D.: Virtual integrated TCP testbed (VITT).

In: Proceedings of ICST/Create-Net Tridentcom 2008, Innsbruck, Austria, pp. 1–6, March
2008

22. Caini, C., Firrincieli, R., Lacamera, D., Livini, M.: Virtualization technologies for DTN
testbeds. In: Proceedings of PSATS 2010, Rome, Italy, pp. 272–283, February 2010

23. ION code. http://sourceforge.net/projects/ion-dtn/
24. Apollonio, P., Caini, C., Fiore, V.: From the far side of the Moon: DTN communications via

lunar satellites. China Commun. 10(10), 12–25 (2013)
25. Caini, C., d’Amico, A., Rodolfi, M.: DTNperf_3: a further enhanced tool for delay-/

disruption- tolerant networking performance evaluation. In: Proceedings of IEEE Globecom
2013, Atlanta, USA, pp. 3009–3015, December 2013

88 P. Apollonio et al.

http://www.vmware.com
http://www.microsoft.com/en-us/server-cloud/system-center/virtual-machine-manager.aspx
http://www.microsoft.com/en-us/server-cloud/system-center/virtual-machine-manager.aspx
http://www.paragon-software.com/home/vm-professional/
http://www.solarwinds.com/
http://www.linux-kvm.org/page/Main_Page
http://vde.sourceforge.net/
http://user-mode-linux.sourceforge.net/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://launchpad.net/virtualbrick
http://wiki.qemu.org/Main_Page
http://www.engineeringarchitecture.unibo.it/en/programmes/course-unit-catalogue/course-unit/2013/386378
http://www.engineeringarchitecture.unibo.it/en/programmes/course-unit-catalogue/course-unit/2013/386378
http://www.engineeringarchitecture.unibo.it/en/programmes/course-unit-catalogue/course-unit/2013/386378
http://www.linux-kvm.org/page/KSM
http://en.wikipedia.org/wiki/Binary_translation
http://www.esa.int/esaMI/Education/SEML0MPR4CF_0.html
http://sourceforge.net/projects/ion-dtn/

	Virtualbricks for DTN Satellite Communications Research and Education
	Abstract
	1 Introduction
	2 Virtualbricks General Description: “Main” Window and “Bricks”
	2.1 “Main” Window
	2.2 VM Brick Configuration
	2.3 VDE Bricks
	2.4 VDE Brick Configurations

	3 Building a Virtual Testbed: DTN Satellite Communications in Space
	3.1 Brick Selection
	3.2 Brick Connections
	3.3 IP Address Assignment

	4 Virtual vs. Real Testbed: Validation of Virtual Results
	5 Research and Education with Virtualbricks
	5.1 Research
	5.2 Education

	6 Conclusions
	References

