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Abstract. The rapid evolution of the Web imposes the need of enhanc-
ing the HTTP over satellite channels. To this aim, SPDY is a protocol
engineered to reduce download times of content rich pages, as well as
for managing links characterized by large Round Trip Times (RTTs)
and high packet losses. With such features, it could be an efficient solu-
tion to cope with performance degradations of HTTP over satellite. In
this perspective, this paper compares the behaviors of HTTP and SPDY
over a DVB-RCS satellite link. To conduct a thorough set of tests over
a realistic scenario, we used the Satellite Network Emulation Platform
(SNEP). In addition, we evaluated how different Bandwidth on Demand
(BoD) methods impact over the retrieval of a page. Results clearly indi-
cate that SPDY could be an effective solution to deliver Web contents
over satellites in a more efficient manner.
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1 Introduction

Nowadays, satellite communication is one of the preferred solutions for accessing
the Internet while moving, and it is also the main choice to deploy connectivity
in rural areas, or in developing Countries. Due to the physical characteristics
of the link, especially long delays and high error rates, many protocols could
experience performance degradations. For instance, mitigation of the impact of
the high Round Trip Time (RTT) affecting GEO channels on TCP performance
has been a prime research topic for years (see, e.g., [1] and references therein).
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However, to effectively pursue the vision of the future Internet, satellites must
also handle Web traffic, which is increasing both in terms of volumes and com-
plexity [2]. In fact, modern web pages do not primarily rely on the main object
containing the HTML code, but they also need several in-line objects. The evolu-
tion of the Web heavily requires in-line objects embedding interactive services, and
content-rich graphic elements. As a consequence, the legacy page-by-page model
should be updated, along with related protocols, such as the HTTP.

To partially fulfill such issues impairing the original HTTP, the HTTP/1.1
[3] introduced multiple connections to increase concurrency, and pipelining to
send multiple object requests over a single TCP connection without waiting for
a response. Even if such additions improve the performance over satellites, they
are not definitive [4]. In fact, the server must generate responses ordered as
the requests were received, thus limiting gains and possibly leading to blocking.
Nevertheless, parallelism of HTTP/1.1 is usually limited (i.e., 7 connections in
standard browsers), and not supported by-default by many servers.

On the contrary, SPDY is engineered to reduce download times of content-
rich pages, as well as for managing wireless channels, which can be characterized
by large RTTs and high packet losses [5]. Especially, to overcome to HTTP
limitations, SPDY introduces:

– multiplexed requests - the number of concurrent requests that can be sent over
a single connection is unbounded and properly handled by a framing layer;

– prioritization - retrievals of in-line objects composing a page can be properly
scheduled, as to avoid congestion or to enhance the Quality of Experience
(QoE). For instance, the client could fetch contents enabling to “understand”
a page, even if incomplete;

– header compression - since the more sophisticated pages may need up to 100
requests, enforcing compression prevents bandwidth wastes due to duplicated
headers;

– server push - contents can be pushed from servers to client without additional
requests.

From an architectural point of view, the previous features are grouped within an
high-level framing layer, which tunnels data into a single SSL/TCP connection.
Hence, SPDY could be a suitable solution for the delivery of Web contents over
satellite links. While the performance of HTTP has been extensively studied in
literature both for wired [6] and satellite networks [7], a complete understanding
of SPDY is still an open research problem. Moreover, many works focus on
evaluating the protocol over wired and IEEE 802.11/cellular mobile scenarios
[8]. For what concerns satellites, from our best knowledge, [9,10] are the only
previous attempts.

Therefore, this paper compares HTTP and SPDY when used over a satellite
link. To this aim, we used the Satellite Network Emulation Platform (SNEP) to
conduct tests on a realistic DVB-RCS environment, with different Bandwidth
on Demand (BoD) schemes. The contributions of this work are: (i) to under-
stand the most relevant behaviors of SPDY when used over a realistic DVB-RCS
channel; (ii) to provide a comparison between HTTP and SPDY emphasizing the
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impact of inline objects; (iii) to understand whether SPDY could be a suitable
tool to enhance satellite communications in place of middleboxes.

The remainder of the paper is structured as follows: Sect. 2 describes the
used testbed, while Sect. 3 discusses the measurement methodology. Section 4
presents the collected results, and finally, Sect. 5 concludes the paper.

2 Description of the Tesbed

To evaluate the performance of SPDY and HTTP over a satellite link we used the
Satellite Network Emulation Platform (SNEP), developed by the University of
Rome “Tor Vergata” [11]. Specifically, it can emulate different aspects of a DVB-
RCS satellite access, for instance, the delay, the bitrate and TDMA framing, as
well as BoD algorithms to dynamically assign the capacity on the return link.
Figure 1 depicts the testbed implemented via the SNEP framework. Specifically,
it is composed by:
– a gateway (GW) (or the access router);
– the network control centre (NCC) (or the hub);
– the satellite channel (SAT);
– the satellite terminals (ST);
– the user terminals (UTs), connected to the STs through a Local Area Network

(LAN).

Each component used for the emulation is built via a Linux-based machine (ver-
sion 2.6), and the needed functionalities are implemented through software mod-
ules running both in user and kernel space. To configure its behaviors (e.g., assign
a fixed amount of bandwidth) a set of additional commands are made available
through the Linux traffic controller tc. To manipulate traffic, ethernet frames
are brought in the user space and then processed by an application-layer agent.
The BoD portion is based on the DVB-RCS signaling, which is used to negotiate
resources among different STs. Moreover, to emulate the DiffServ queuing disci-
pline of DVB-RCS, packets are stored in a buffer implementing multiple parallel
queues, which are served with different priorities.

For what concerns the hardware, both the Web client and the server are
based on quad-core PCs with 32 GB RAM. To have a proper support for the
SPDY protocol, we used Mozilla Firefox (24.0).

To capture data, we used the Wireshark sniffer with the SPDYShark exten-
sion enabling to decode protocol messages and to inspect its relevant parameters.
When TLS/SSL encryption is used, we configured Wireshark to use the proper
SSL keys to decrypt/decode the gathered data.

Table 1 reports the key configuration parameters characterizing our tests.
To emphasize the most critical behaviors when retrieving pages with different

protocols, we created ad-hoc HTML pages for testing purposes. Specifically,
to stress the iterations of the request-response exchange, each page contains a
very large number of in-line objects, i.e., 640 small images. The main object
implementing the hypertext (the main.html) has a size of 24.8 Kbytes. We
point out that the test page has been crafted to highlight performance aspects
of HTTP/SPDY when acting over high RTT links.
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Fig. 1. Testbed used for evaluating SPDY and HTTP over a satellite network.

Table 1. TCP and Web server configurations.

TCP configuration TCP Cubic (with optimized parameters for satellite [12])

tcp moderate rcvbuf enabled

IW= 10

Web server Apache/2.2.22

SPDY: Mod SPDY 0.9.3.3

Server Push (X-Associated-Content header)

with different % for the pushed objects

Apache KeepAlive settings enabled/disabled

3 Measurement Methodology

Planned measurements aim at comparing the behavior of SPDY with the most
popular versions of the HTTP protocol, especially when different BoD mech-
anisms are deployed in the DVB-RCS return link. To this aim, a single user
terminal (UT1) is connected to the virtual satellite terminal (ST1), which is
implemented by SNEP. The available bandwidth is 4 Mbit/s and 1 Mbit/s,
for the forward and the return link, respectively. The round-trip propagation
delay is set equal to 520 ms, which is typical for a GEO satellite link. Besides,
SNEP introduces an additional delay taking into account the MAC layer, i.e.,
the TDMA overhead and latencies due to the framing of the DVB-RCS. Tested
BoD methods are:

– CRA (Constant Rate Assignment) - all the time slots are permanently assigned
to the target station for the whole simulation duration;

– RBDC (Rate Based Dynamic Capacity) or VBDC (Volume Based Dynamic
Capacity) - slots are dynamically assigned to the return link, depending on
the traffic incoming to the satellite terminal: RBDC considers the ingress data
rate, while VBDC uses the cumulative volume of queued data to compute
capacity requests;

– mixed: a mix of the previous.
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Table 2. Parameters used for emulating the different BoD schemes.

BoD scheme Values (avg. on 50 repeated trials)

CRA 228 slots at a constant rate

RBDC 228 rate-based slots

VBDC 228 volume-based slots

Mixed 18 CRA slots, 105 RBDC slots, 105 VBDC slots

The values used for each BoD scheme are summarized in Table 2.
To have a fair assessment, we modified some parameters ruling the behavior

of the browser, both for the case of HTTP and SPDY. In fact, default values are
optimized for the wired Internet. In more details:

– network.http.connection-retry-timeout: defines the amount of time
before considering a connection attempt aborted. Upon expired, the browser
will open a parallel backup connection. Since this parameters is set to 250 ms
by default, having an RTT of more than 520 ms would lead to unneeded TCP
connections. Thus, it has been set to 0 in our trials (i.e., deactivated);

– network.http.pipelining: enables HTTP pipelining, i.e., the browser can
send multiple GET without waiting for a server response. Pipelining has been
enabled and set to 32 simultaneous requests, at the maximum;

– network.http.speculative-parallel-limit: normally, set to 6, it specifies the
number of half-opened sockets to be kept for frequently used destinations (e.g.,
Google APIs). To avoid unpredictable behaviors of the browser, as well as to
reduce overheads on the satellite link, we imposed this parameter to 0;

– network.http.spdy.timeout: defines the amount of time to wait after the
page is considered received completely and the used TCP connection is closed
(i.e., the RST/FIN). The default value is 180 s and is generally suitable to
handle AJAX-based interactive contents. However, since our tests are aimed
to verify performance during the page load, this value has been reduced to 5
s, as to not add noise to the measured times. We point out that this value is
equal to the default keep-alive option of the Apache 2.2.2 used in our tests, as
to guarantee a fair scenario.

The Web server has been configured to support SPDY and different ver-
sions of HTTP, i.e., HTTP1.0, HTTP1.1, SSL/HTTP1.0, and SSL/HTTP1.1.
We underline that since SPDY uses SSL by default, this choice has been made
to provide a more fair comparison. Trials have been performed with an instru-
mented Firefox browser, and each trial has been repeated 50 times.

4 Performance Evaluation

This section presents the outcome of the performance evaluation of the differ-
ent version of HTTP and SPDY using an emulated DVB-RCS satellite access.
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For the sake of conciseness, we present some results only using the BoD method
defined as “mixed” (see Sect. 3). Nevertheless, in Sect. 4.4 we will offer a vis-à-vis
comparison among the different BoD schemes.

Since it will be largely used in the rest of this section, we define the Page
Loading Time (PLT) as [13]: PLT = T i

C −TR, where T i
C is the time at which the

last i-th inline object composing the page is completely received (i = 642 in our
tests), and TR is the time when the first GET for the index.html is performed.

4.1 Impact of the Header Compression

Native header compression is one of the most important design choice of SPDY,
since it allows reducing the amount of transferred bytes. Figure 2 summarizes
the amount of data transferred to retrieve the test page.

Fig. 2. Impact of the header compression per protocol.

Even if SPDY only needs 416 Kbytes to complete the transfer, such a result
is very close to the cases when HTTP is adopted (∼508 Kbytes). On the con-
trary, the real issue preventing the effectiveness of compression is due to SSL
encryption, which accounts for overheads needed for the additional handshak-
ing. In fact, the usage of SSL with the “traditional” HTTP leads to a signifi-
cant increase of the transferred data: ∼871 Kbytes for SSL/HTTP1.0 and ∼659
Kbytes for SSL/HTTP1.1. Thus, the optimized design of SPDY in managing
encryption [14] definitely plays a role.
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4.2 TCP Connection Analysis

Understanding how TCP connections are managed by different protocols is
mandatory to enhance their behaviors over satellite. Hence, Fig. 3 compares dif-
ferent evolution of the transport layer against the time.

Fig. 3. Different management schemes of TCP connections per protocol.

For the case of HTTP1.0, which does not allow connection reuse, the browser
opens the first TCP flow to send a GET for the index.html. As soon as it is
received and parsed, a batch of 6 parallel connections is spawned to retrieve the
needed in-line objects. The process is then iterated until the completion of the
whole page. This leads to a PLT of 131 s (out of the graph scale), which is not
acceptable. A similar evolution happens for the case of SSL/HTTP1.0 (again
out of the graph scale). Yet, the need of performing additional exchanges for the
SSL signaling, makes the first connection longer. Besides, encryption overheads
account for longer transfer times, thus resulting into a PLT of 198 s.

When using HTTP/1.1, the first steps are still the same of the previous
cases. Specifically, it uses a connection to retrieve the main object, and then
uses the maximum allotted of 6 parallel TCP connections to retrieve additional
contents. Then, it exploits the feature of connection reuse, and each one remains
open to download 100 object (which is a limit imposed by the Apache web
server). Recalling that our test page is composed by 642 objects, after hitting
the limit of 600 items (i.e., 100 objects × 6 connections), a new batch of TCP
connections is created. Such connections are mostly underutilized, since they are
used to retrieve only a small fraction of data (equivalent to 42 objects only) (see
Sect. 4.3). However, compared to HTTP1.0, the overall performance achieved in
terms of PLT is better of an order of magnitude, i.e., PLT∼10 s. The additional
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5 s, for which the connections remain active are due to timeouts of Apache
(i.e., the parameter network.http.spdy.timeout, as discussed in Sect. 3). Also
SSL/HTTP1.1 behaves similarly, with times inflated by the overheads due to
SSL (as explained earlier), accounting for an additional time of ∼2 s in the PLT
compared to the plain HTTP1.1.

Finally, in the SPDY case, the single-connection setup is clearly depicted.
Thus, all objects are multiplexed into a unique TCP conversation. Once the page
is completely received, the TCP connection is kept open by the browser for 5
s, as to maintain the same timeout period for an easier comparison. Its reduced
overheads, and utilization of a unique (longer) connection, enables to better
exploit the available bandwidth (even without using parallelization/pipelining).
Then, SPDY has a PLT of 9 s, which is similar to HTTP1.1, but with a simpler
complexity in the transport layer and supporting security. This is a plus, since
satellite links are usually accessed through Performance Enhancement Proxies
(PEPs) or middleboxes.

4.3 Throughput Analysis

Another important aspect to understand how the different Web protocols behave
over a DVB-RCS link concerns the analysis of the throughput.

Figure 4 focuses on the HTTP1.0. Results indicate that the average rate is
∼9 Kbyte/s. A deeper analysis reveals that the main cause is due to the usage
of separate connections (one per object, 642 on the overall). Therefore, for each
connection, a set-up and tear-down have to be performed, also worsened by
the high values of the RTT, and impairments due to the slow-start. Similar
considerations can be made when SSL is used.

Fig. 4. Throughput analysis of HTTP1.0.

Figure 5 considers HTTP1.1. Since it implements pipelining and connection
reusing, the latency impacts less on the behavior of the TCP. As a result, the
achieved throughput is more than 200 Kbyte/s. Also in this case, SSL accounts
for an overhead, slightly reducing the overall performances.
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Fig. 5. Throughput analysis of HTTP1.1.

Finally, Fig. 6 shows the evolution of SPDY. Since, it uses a single connection,
the delays introduced by the satellite network are absorbed (with the acceptation
that theyare experiencedonce, andnotonaper-flowbasis).Therefore, theachieved
throughput is ∼250 Kbyte/s, which is the best obtained value in our tests.

Fig. 6. Throughput analysis of SPDY.

4.4 Impact of the BoD Scheme

Figure 7 shows how the different BoD schemes impact on the PLT, for each
protocol. Since previous results clearly show degradations due to the joint use
of SSL and HTTP, the evaluation of the BoD scheme only considers the plain
HTTP/HTTP1.1 and SPDY. In essence, the BoD increases the latency experi-
enced by the application, which worsen the PLT. To highlight its impact, data
transfers are performed on the return link.



HTTP and SPDY Over Satellite Links 43

As showcased, SPDY always outperforms the HTTP, and improvements
increase for higher values of the RTTs, which characterize the VBDC and the
RBDC schemes. In particular, SPDY is resilient enough to the increased laten-
cies. In the worst case (i.e., the VDBC with an RTT of 1.6 s), its PLT is ∼21 s,
that is only 10 s greater than when using CRA. On the contrary, all the flavors
of HTTP are greatly impaired by the VBDC, with a PLT ranging from ∼150 s
(for HTTP1.1) to ∼300 s (for HTTP1.0).

Fig. 7. PLT vs different BoD schemes.

5 Conclusions and Future Works

In this paper we compared the behaviors of different flavors of HTTP and SPDY
over a DVB-RCS satellite link. To this aim, we used the Satellite Network Emu-
lation Platform (SNEP) to conduct a thorough set of tests.

Results indicate that, owing to its single-connection architecture, SPDY is a
promising solution to access the Web when using satellites. Also, it has a reduced
TCP footprints, which can offload PEPs and middleboxes usually deployed in
satellite service providers.

Future works aim at enriching the investigation, and also using real Internet
Service Providers (ISPs) to better evaluate the feasibility of using SPDY as
the unique technological enabler to bring modern Web contents via satellite
platforms.
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