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Abstract. Star light navigation can provide the current attitude and
position of the spacecraft in deep space. However, the accuracy of stellar-
inertial attitude determination is degraded because of star image smear-
ing under high dynamic condition. To solve this problem, two key work,
including accuracy star extraction and fast star identification, should be
done. In this paper, we bring interpolation algorithm into contiguous area
pixel searching for star extraction, and get sub-pixel coordinate informa-
tion of the star points. In addition, a divisional method is proposed to
improve star identification algorithm speed based on Hausdorff distance.
The simulation results show that work not only has accuracy identifica-
tion rate but also has better recognition speed. It was used successfully
in the actual projects.
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1 Introduction

Autonomous spacecraft navigation means the spacecraft can real-time deter-
mine its own position and attitude without any other support. The key factor
in achieving autonomous navigation is accurate measurement of spacecraft atti-
tude [1]. Currently, a new generation of CMOS star sensor is used for aircraft atti-
tude measurement because of its high precision, none attitude cumulative error,
fast fault recovery capability and intelligent [2]. It can provide accurate space-
craft flight attitude to a few arc-seconds without any prior knowledge. The star
pattern recognition is one of the key technologies for spacecraft autonomous nav-
igation based on star sensor. Many scholars are committed to this research, and
proposed a number of algorithms. Nowadays, typical stellar identification algo-
rithms used commonly include polygon angular distance matching algorithm,
polygon angles matching algorithm, main star identification method proposed
by Bezooijen, triangular matching algorithm, quadrilateral sky autonomous star
identification algorithm, the sky autonomous grid algorithm, etc. [3–5]. Most of
these algorithms complete recognition based on feature extraction. As a result,
these complex algorithms are slow or need large storage and have poor anti-
interference ability [6]. In addition, the star starlight images in the moving star
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sensor will be stretched during the exposure time and lead to will lengthen and
bring smearing. The smearing images reduce the centroid extraction accuracy,
making a big decline in recognition accuracy decline.

In this paper, we aim at star centroid extraction in smearing images from
moving star sensor. A extraction algorithm based on Gaussian curved interpo-
lation is proposed to improve the centroid extraction accuracy. Secondly, we
use the whole star database as a standard reference set, and consider extracted
centroid data as a set to be recognized. Then, the minimum Hausdorff distance
between two sets is determined to identify star location. At last, the divisional
strategies for whole star database are proposed to improve the computational
efficiency of the recognition algorithm.

2 Fast Vision-Based Localization Algorithm

Algorithm Overview. Because the star is considered to be at infinity, starlight
can be seen as parallel to the light. In the inertial coordinate system, if the star
sensor moving along a straight line, then the stars in the star sensor imaging
position is fixed, which is similar to a static star sensor. However, when the star
sensor rotates, stars’ position detected in the star sensor will change and result
in smearing. In Fig. 1, it shows a smearing image get from a moving star sensor.

Fig. 1. Case of smearing imaging.

Therefore, for deep space spacecraft location, the smearing images must be
processed to extract the stellar centroid accurately. Then, it searches in whole
star database with these stellar centroid data to get the current spacecraft loca-
tion. The fast vision-based localization algorithm for spacecraft, proposed in this
paper, consists of three steps, as shown in Fig. 2. First, Gaussian curved inter-
polation method for extraction of star centroid is used to obtain sub-pixel star
centroid location information. Then, according to the moving state of the air-
craft, we cut apart the whole star database, and match star centroid information
in the divisional database to identification. Finally, the location of the aircraft
in the whole star pattern is output as a result.



24 Q. Liang et al.

A0

A1

Input

A1

A2

star centroid 
estimation

A2

A3

Star Database
Dividing

A3

A4

Division Star Map 
Recognizing

A4

Output

Whole Star Map 
Recognizing

Fig. 2. Flow graph of fast vision-based localization algorithm.

2.1 Star Centroid Estimation Algorithm Based on Gauss Curved
Fitting

Due to limitations of star sensor resolution, it is difficult to obtain high-precision
stellar position from the star sensor image. Thus, there is a certain precision
error in the extracted star pattern position. Set star sensor FOV (Field of View)
of 100 × 100, the star sensor has a resolution of 1024 × 1024, the star sensor
angular resolution is approximately 36”, the error of the extracted star pattern
position is also close to 36”. Obviously, the error of extracting star pattern
does not contribute to the correct rate of star pattern recognition, but also
affect navigation accuracy. Taking into account the scattering of the lens, the
imaging results in stellar star sensor should be a stellar position as the center of
the spot. Because the star is a point light source, under normal circumstances
the brightness of spots are represented by the point spread function, energy
distribution can be approximated as a Gaussian surface, and the brightness
decreases as quickly away from the center position. Considering the spot size
is not large, and the point spread function of the specific parameter is difficult
to determine. To solve this problem, the paper studies the Gaussian surface
interpolation method to obtain analytic recursive Gaussian surface parameters.

As shown in Fig. 3, Set p0(x, y) is the maximum position of stars resulting
from the star sensor images, coordinates (x’, y’), its four adjacent gray values
of p1(x1, y), p2(x2, y), p3(x, y1), p4(x, y2). Pixel p0(x, y) and neighbor pixels are
constituted by a Gaussian surface, so the mathematical expression is formula 1:

p = Aexp(−r2

B
) (1)

In this formula, r2 = (x − x0)2 + (y − y0)2, and (x0, y0) corresponds to
a central location of Gaussian surface, A corresponds to the maximum value
of the Gaussian surface, and correspondence with magnitude. The larger the
magnitude, the greater the value of A; B corresponding to the spot size of the
star, the smaller the size of the star, the smaller the value of B. The above
equation with four unknowns. In order to obtain analytic equations, equation
parameters such as x0, y0, A,B must to be get. However, the above equation
is a nonlinear exponential function, analytic fitting parameters is very difficult.
When taking the origin of the coordinates (x0, y0) into consideration, the above
equation containing only A, B two parameters. Logarithm of both sides of the
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Fig. 3. Stellar location and adjacent gray distribution.

equation, there is formula 2:

ln(p) = ln(A) − r2

B
(2)

Assuming:

y = ln(p), x = r2, a = − 1
B

, b = ln(A) (3)

There is:
y = ax + b (4)

Obviously, the formula 4 is a linear function. It can be obtained coefficients a, b
by a linear least-squares fitting method.

Assuming

S =
n∑

i=1

(yi − y)2 =
n∑

i=1

(yi − axi − b)2 (5)

Taking the logarithm on both sides of formula 4 and setting logarithmic zero,
{

∂S
σa = 0
∂S
σb = 0

(6)

It will be: ⎧
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(7)

In formula 7, k is the number of data. The coefficients, a and b, obtained from
the above can help to restore the coefficients A and B in formula 2. Formula 7
shows that precision magnitude can be obtained by fitting Gaussian surface
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with a known star location coordinates. To simplify the calculations, the fitting
position is the position of the center of the star with 4 or 8 adjacent pixels.

In the above calculation, determining the position of the stars becomes the
key to the algorithm. Since the complex Gaussian surface, to facilitate the cal-
culation, the Gaussian curve fitting should be done in the x and y direction
respectively, then, the position of the stellar is obtained by finding the maxi-
mum value of the curve.

If we assume constant parameter y in formula 2, then in the x direction, it
will be:

p = Aexp(− (x − x0)2 + (y − y0)2

B
) (8)

Taking the logarithm on both sides of formula 8 and bringing x1 = −1x2 =
0x3 = 1 to it, solution of this formula will be:

{
B = 2

2 ln(p2)−ln(p1)−ln(p3)

x0 = B
4 (ln(p3) − ln(p1))

(9)

Obviously, x0 is the star coordinates in the x direction, regardless of its size
and y. Since the X-axis and Y-axis are symmetrical in the Gaussian surface
relative to the coordinate origin, the star coordinate in y direction can be get in
the same way, which is shown in formula 10.

{
B = 2

2 ln(p2)−ln(p4)−ln(p5)

x0 = B
4 (ln(p5) − ln(p4))

(10)

2.2 Fast Divisional Matching-Based Star Pattern Recognition
Algorithm

In the basic star gallery, which stored a standard stellar parameters, their vec-
tor form is celestial coordinates which is represented by red latitude, in this
paper, we use the basic celestial coordinates red latitude to identify. In the star
sensor the images to be identified are two-dimensional gray-scale image, the
two-dimensional X, Y coordinates with red latitude, and gray-scale image coor-
dinates with magnitude. Usually in the identification, X, Y must be converted
to red latitude. Unfortunately, due to before recognition, star sensor point is not
completely sure, so that we can only get from a relative red latitude from X, Y
coordinates, but can not get the absolute end, to this end, using the Hausdorff
distance between the relative position of the star pattern and the satellite library
as a criterion to conduct star identification.

Despite the lack of precise red longitude coordinates from the star sen-
sor, however, depending on the structure and the relative position of the
star field is kept substantially constant, set to be recognized star Pictured
A = {a1, ..., ak, ..., ap} star standard library B = {b1, ..., bj, ..., bq}, the improve-
ment of the Hausdorff distance between them is defined as:

H =
∑

k

min(dk) (11)
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In this formula,

dk = w1(a1k − (b1j − b1i)) + w2(a2k − (b2j − b2i)) + w3dsmk (12)

It represents the relative weighted distance between the k-th star, in A that
to be identified, and the j-th star in star database B. Wi (i = 1,2,3) is the weight
value. Usually, W1 should equal to W2, and i is the serial number of i-th star
in star database, where j is the serial number of j-th star in star database. The
third item represents the changes in magnitude. Due to the magnitude of the
error is relatively large, the value of W3 should be less than W1. The distance
between magnitude can be expressed as:

dsmk =| a3k − b3j | (13)

As the magnitude of the change has a great impact on the star pattern
recognition, especially the star sensor threshold of exposure and weak star, due
to the dynamic effects of noise and star sensor, when hidden, particularly large
impact on the star pattern. Taking the impact of changes in magnitude into
account, Eq. 12 can be rewritten as:

dk = exp

(
dsmk

d0

)
((a1k − (b1j − b1i)) + (a2k − (b2j − b2i))) (14)

In formula 11 Hausdorff distance is the sum of the minim distance between
each recognized star and star database in recognized stars, when the star to be
identified in the star sensor match with the star in the star database, it has the
least sum of the minimum distance. This avoids noise due to individual stars
appear larger mismatch problem that may arise.

When there is uncertainty about the direction of the star sensor completely, it
not sure star general area in the repository. Due to the number of stars in the all
star database, more recognition speed is slow. Assuming N stars in star database,
calculated by the formula 11, complexity of a complete minimum H distance
calculating is N2. If the standard star database is divided into M region, with
N/M stars in each region, the complexity will reduce to N2/M . Theoretically,
there is M times faster than matching in whole star database, where the bigger
M can get the faster calculation speed. However, the size of each area, should
be greater than that of star sensor field, and each area should have enough
redundancy for matching in a subregion.

Assuming that stars in the sky is evenly distributed, and taking the unit of
length to be the radius of sky, the number of stars is N/4π. Assuming that the
area size is K × K, and the size of the FOV of star sensors is L × L, one area
includes the area of star sensor at least, meeting K × K ≥ 2L × 2. Planar area
is approximation for each region:

Spartial ≈ K2 (15)

An area which does not overlap region is:

Sefficitive ≈ (K − L)2 (16)
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The rest is the redundant area. Assuming that each area is equal, the integral
area number is:

NUM =
Sfull

Sefficitive
≈ 4π

(K − L)2
(17)

Each number of stars in the area of approximation is:

M = Spartial × N

4π
≈ N

4π
K2 (18)

The total number of calculations is:

Count = M2 × NUM ≈ N2K2

4π(K − L)2
(19)

For the derivation and ordering derivative equaling to zero, it can get K = 2.
When K = 2, the calculation number corresponds to the minimum value with
N2L2/π.

2.3 Divisional Strategies for Standard Star Database

By formula 19, in order to improve the speed of star pattern recognition, the
standard star database should be divided into different regions. Because the star
standard library is stored according to the spherical coordinates of latitude and
longitude, the coverage of the latitude and longitude coordinates is not uniform
to the certain star sensor in different latitude and longitude position, the star
database segmentation is not uniform. Figure 4 shows the longitude and latitude
area covered by star sensor.

The figure shows:
ab = 2ac sin(∠acb/2) (20)

ac = oa sin(∠aoc) (21)

Fig. 4. Conventional diagram of star database segmentation.



A Fast Vision-Based Localization Algorithm for Spacecraft in Deep Space 29

So:
ab = 2 × ac × sin(∠acb/2) × sin(∠aoc) (22)

ab = 2 × oa × sin(∠aob/2) (23)

By formulas 22 and 23 it can be obtained:

sin(∠aob/2) = sin(∠acb/2) × sin(∠aoc) (24)

∠aob is the FOV of star sensor expressed as θ. ∠acb is latitude expressed as α,
and ∠aoc is complementary angle corresponding longitude expressed as 90 − δ.
The formula 24 will change to:

sin(θ/2) = sin(α/2) × cos(δ) (25)

Along the longitude direction, ∠eof corresponding to the amount of change is
the longitude of �α, therefore, star database can be split directly along the
longitude of the star sensor based on the field size.

A star sensor’s FOV is 100 × 100, and each child area overlaps. The segment
of star database calculated from formula 25 as shown in Table 1. The actual
interval in the table is 2 times to division by 360◦.

Table 1. Division of star database.

No Latitude range Theoretical interval The actual interval Number of segments

in degrees in degrees

1 −90∼−70 360 360 1

2 −80∼−60 90 180 4

3 −70∼−50 30.5116 72 10

4 −60∼−40 20.3220 48 15

5 −50∼−30 15.6731 36 20

6 −40∼−20 13.1018 30 24

7 −30∼−10 11.5669 24 30

8 −20∼0 10.6490 24 30

9 −10∼10 10.1559 24 30

10 0∼20 10.6490 24 30

11 10∼30 11.5669 24 30

12 20∼40 13.1018 30 24

13 30∼50 15.6731 36 20

14 40∼60 20.3220 48 15

15 50∼70 30.5116 72 10

16 60∼80 90 180 4

17 70∼90 360 360 1

Total 298
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3 Related Work

Since the first CCD-based star tracker was developed by Salomon in 1976 [7],
great advancements in star identification have been made in about four decades.
Many faster and more reliable methods were proposed from the 1990’s [3]. Scholl
proposed a method based on inter-star angles ordered by their relative bright-
ness [8]. His method aimed at the search process acceleration with less time than
the classical multi-step star identification method proposed by Baldini [9]. How-
ever, Scholl’s method retains the O(nf2), so many faster techniques were pro-
posed in the following years. To reduce the search time much further, a method
using a “k-vector” to search the database in an amount of time independent of
the size of the database [10] was proposed by Mortari. With this method, the
search time for a single star-pair would be O(k). Guangjun [11] proposed method
based on feature extraction in 2007, using the inter-star angles and the angle
made by two stars relative to a central star, which was similar to Liebe [12].
He uses a linear database search running in O(n) time, while feature extrac-
tion time remains O(f lg b). In 2008, Kolomenkin [13] proposed a modification
of the SLA algorithm [14] to reduce the time spent cross-checking the results of
the k-vector. While the algorithm performs the cross check O(k/f) faster than
the SLA which take O(k2)-time, it calculates O(f2) more inter-star angles, and
k-vector searches, each of which takes O(k)-time, contributing an increase of
O(kf2)-time.

On the other hand, some non- dimensional algorithms and recursive star
identification methods are proposed to improve the robustness of star identifi-
cation. Rousseau computes the attitude for each star triangle with the sine of
star-triangle interior angles, and the final analytic time of is O(kf lg f lg n) [15].
Samaan reduced the recursive mode time was to speed the selection of stars for
recursive star identification [16]. One of his methods uses the Mortari’s Spherical
Polygon-Search (SP-Search) [17,18], which uses a k-vector 3 times to find the
stars within calculated x, y, and z ranges in inertial space. Each of the three
database searches takes O(k) time, while the cross-comparison takes O(k3)-time.
The another of his methods uses the Star Neighborhood Approach (SNA) which
takes O(b)-time to find candidate stars, if b stars are identified. It is uncertain
how many successive iterations would be necessary to ensure that all the stars
in the given field of view have been found, other than it is most likely bounded
by O(fb).

4 Performance Evaluation

Using of statistical simulation, the extraction accuracy is analyzed by comparing
Gaussian surface fitting with centroid method in [3].

Simulation Condition 1: The pixels position of theoretical centroid is
(4.7, 4.1), with σ = 1, and fitting spot size is 3 × 3 pixels. The result of 100
times on average is shown in Fig. 5.
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(a) In x direction (b) In y direction

Fig. 5. Different SNR results of two different methods in simulation 1

Simulation Condition 2: The pixels position of theoretical centroid is (4.5, 4.5),
with σ = 1, and fitting spot size is 3×3 pixels. The result of 1000 times on average
is shown in Fig. 6.

(a) In x direction (b) In y direction

Fig. 6. Different SNR results of two different methods in simulation 2.

The above results indicate that the window is calculated for participating
quantized pixel size. When the centroid position is different, the distribution of
image within the window is asymmetric, whereby the accuracy is different. When
the SNR is relatively small, the centroid extracting accuracy is limited because of
the image of an asymmetric distribution in the window. On the other hand, noise
is mainly restricted in Gaussian fitting, so Gaussian fitting has higher accuracy
than the centroid method. Therefore, for the establishment of high-precision
imaging model, using Gaussian fitting method is a better choice.

Simulation Condition 3: Under different conditions, a simulation of fast divi-
sional matching-based star pattern recognition algorithm was done in whole star
database with the magnitude between 0 and 6.
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In order to facilitate experiments and showing, we choose an arbitrary area
60◦ × 60◦ as a reference star pattern, and arbitrarily select FOV of 100 × 100
regions to map to star sensor image. In recognition process, star sensor image is
randomly generated.

(a) Matching without interference. (b) Matching with a meteor interference.

Fig. 7. Results of star pattern matching with random sensor image.

Figure 7 shows the results of star pattern matching. The y-axis represents the
H distance, and the x-axis represents the serial number of stars. The matching
results can be obtained by the serial number in the figure. According to the
maximum of the star sensor possible noise, when experimenting, set the noise of
latitude to 36 arc-second, the noise of magnitude to 0.5. It can be clearly seen
from the figure that H distance is suddenly reduced when the star sensor image
matches the star pattern. On the other hand, if the sensor image does not match
the reference star pattern, H distance is relatively large and random. Figure 7(b)
shows a matching result of a meteor interference with 1 arc-minute of latitude
noise and 1 of magnitude noise. It can be seen from the figure, even under harsh
conditions, the algorithm can identify the correct result.

5 Conclusion

Based on the analysis of star sensor imaging principle, this paper proposes a min-
imum use of star sensor relative space position Hausdorff distance map recogni-
tion method. This method is based on the spatial structure of stars similar princi-
ples, avoiding the complex feature extraction algorithm, but takes full advantage
of all the information obtained by the star sensor. Experimental results show that
the minimum matching method based on the Hausdorff distance, it is possible to
obtain better recognition accuracy. For in the absence of prior knowledge, iden-
tify areas for full Star slower problem, the paper presents the basic methods star
database partitions, partition star identification, so that the recognition speed
is improved.
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