
Smartphones Apps Implementing a Heuristic
Joint Coding for Video Transmissions Over

Mobile Networks

Igor Bisio(B), Fabio Lavagetto, Giulio Luzzati, and Mario Marchese

DITEN, University of Genoa, Genoa, Italy
{igor.bisio,fabio.lavagetto,mario.marchese}@unige.it

giulio.luzzati@edu.unige.it

Abstract. This paper presents the Heuristic Application Layer Joint
Coding (Heuristic-ALJC) scheme for video transmissions aimed at
adaptively and jointly varying both applied video compression and
source encoding at the application layer used to protect video streams.
Heuristic-ALJC includes also a simple acknowledgement based adapta-
tion of the transmission rate and acts on the basis of feedback information
about the overall network status estimated in terms of maximum allow-
able network throughput and link quality (lossiness). Heuristic-ALJC is
implemented through two smartphone Apps (transmitter and receiver)
and is suitable to be employed to transmit video streams over networks
based on time varying and possibly lossy channels. A performance inves-
tigation, carried out through a real implementation of the Apps over
Android smartphones, compares Heuristic-ALJC with static schemes.

1 Introduction

The nature of the modern Internet is heterogeneous and implies the technical
challenges of Quality of Service (QoS) guarantees and the quick deployment of
new telecommunications solutions. These challenges need significant effort in
the fields of the design of reliable and reconfigurable transmission systems, open
source software, interoperability and scalability [1].

The mentioned internet scenario constitutes the reference for this paper: the
considered network is characterized by radio and satellite links and includes
mobile devices such as smartphones, employed to acquire and transmit video
streams through dedicated Apps. An applicative example of the considered envi-
ronment concerns future safety support services: after a critical event (e.g., a road
accident, a fire), first responders (e.g., a rescue team or just a person on site) can
register a video by a smartphone and send it to an experienced operator over
wireless/satellite heterogeneous network to allow managing rescue operations
more consciously. In the described framework, static management of video com-
pression and protection is not an optimal choice. Dynamic adaptation of video
flow is necessary. It may be acted by opportunely tuning both the amount of
data offered to the transmitting device and the amount of redundancy packets to

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

I. Bisio (Ed.): PSATS 2014, LNICST 148, pp. 123–131, 2016.

DOI: 10.1007/978-3-319-47081-8 12



124 I. Bisio et al.

protect the video from losses. A possible improvement may derive by considering
the impact that each of these tunings has on the other and by evaluating the
joint effect of the two on the whole system performance. Following this scientific
line, to guarantee a ready-to-use and satisfactory video fruition, two Apps, based
on the Android OS, have been designed, implemented and tested. As described
in the remainder of this paper, the Apps, a Transmitter App and a Receiver
App, employ an application layer joint coding algorithm for video transmission
based on a heuristic approach suited to be applied over smartphone platforms.
The algorithm adaptively and jointly varies both video compression and channel
coding to protect the video stream. It operates at the application layer and it is
based on the overall network conditions estimated in terms of network maximum
allowable throughput and quality (packet cancellations or lossiness): on the basis
of information about packet loss, a given protection level is chosen; in practice,
the amount of information and redundancy packets is chosen. Established the
amount of available information packets and estimated the maximum allowable
network throughput, video compression is consequently adapted to assure the
best quality. The proposed solution also includes a simple acknowledgement-
based adaptation of the transmission rate at the application layer aimed at
not losing information in the application layer buffers. The proposed applica-
tion layer joint coder considers the underlying functional layers as a black box.
The Apps do not need any knowledge about implementation details and do not
require any intervention regarding the underlying layers. The framework behind
this work has been preliminarily presented in [2] and described in detail in [3].

2 State of the Art and Aim of the Paper

[4] demonstrates the existence of two sub-spaces called performance regions, and
shows that the employment of application layer coding is significantly advanta-
geous in one region, while it is detrimental in the other one. The first performance
region contains the systems that experience light channel errors and low packet
loss probability. The second region contains the systems characterized by relevant
channel errors. Referring to [4], the mentioned coding approach may improve the
performance only in the systems with low packet loss probability due to channel
errors because error prone channels require so high levels of redundancy that
they cause packet losses due to congestion. A solution to this limit is proposed
in [5, Chap. 1]: increasing protection does not result in an increased offered load
because the packet transmission rate is kept constant or, as done in this paper,
adapted to the estimated maximum network throughput. Controlling the overall
packet transmission rate, the network load is under control but, increasing pro-
tection implies reducing the amount of sent information per time unit (e.g. the
size of sent video frames) and, consequently, the quality of sent information. In
other words, the impact on the network load is controlled, information is more
protected against channel errors, but the information distortion increases and
impacts negatively on the QoE. For this motivation, if this type of solutions are
applied, an end-to-end distortion minimization algorithm should be devised, to



Smartphones Apps Implementing a Heuristic Joint Coding 125

get a joint source-channel coding approach. For instance, as done in this paper,
a proper compression level may be selected consequently to the choice of the
protection level. [6] investigates a joint coding solution at the application layer
assuming the traffic generated by Gaussian sources. The contribution of this
paper is inspired by the cited literature but, to the best of the authors’ knowl-
edge, there is no investigation about real implementations of joint source-channel
coding at the application layer. This paper considers video streams acquired by
a smartphone. The implemented Android Apps are aimed at jointly compressing
and protecting the video dynamically so to guarantee a good QoE of the received
video in case of error prone channels, limiting the offered load to the network.
To reach the aim, differently from the aforementioned approaches, we employ a
method to prevent exceeding the maximum allowable network throughput and to
estimate the packet loss. The benefit of the designed coding has been highlighted
through real video transmissions with smartphones over an emulated network,
similarly as done in [7].

3 Implemented Apps

3.1 Preliminarily Definitions

The implemented applications put into operation video streaming between two
distinct smartphones based on the Android OS. We describe the two Apps
(Transmitter and Receiver), the software architecture, and the related struc-
tures in the following.

The chosen source encoder for video frames is MJPEG. From the practical
viewpoint, an MJPEG video flow is a series of individual JPEG coded pictures
representing the video frames. Concerning channel coding, LDPC [8] has been
chosen for its computational feasibility. The resolution for video frames is QCIF
(Quarter Common Intermediate Format, 176× 144 pixels). The source coder is
implemented by Android’s API through a Java object to compresses a raw image
through JPEG by quality index (decided by the heuristic algorithm proposed
in this paper) as an input. The LDPC codec has been taken from an existing
implementation [9] by adapting the source code as a library of the Android
Native Development Kit (NDK).

The sequence of information processing actions of MJPEG video frames may
be described as follows. A single video frame (i.e. a JPEG coded picture) is a
content that is identified by a unique content id. The video stream is composed
of a sequence of video frames. As shown in the right part of Fig. 1, which shows
also Heuristic-ALJC actions described in Sect. 4, each video frame is divided into
video packets (each video packet contains, at most, one video frame) also
adding a proper header H, described in detail in Subsect. 3.2. Video packets are
stored in a processing buffer of fixed length (35 packets in this paper). Once
the number of video packets in the buffer reaches a certain threshold (called
channel coding threshold - CCT, dinamically managed by the heuristic algo-
rithm introduced in this paper), the video packets contained in the buffer enter
the LDPC coder that generates a number of redundancy packets suitable to



126 I. Bisio et al.

fill the rest of the buffer. In practice, the threshold CTT decides the amount of
packets dedicated to transmit video information and, consequently, the amount
of redundancy packets. Both video and redundancy packets have a length of
1024 [byte]. The sequence of video packets and the related redundancy pack-
ets compose a codeword (of 35 packets, as said), identified by a sequence
number. The stream of packets composing codewords is stored into a code-
word buffer from where the UDP transport protocol picks up and transmits
the packets. A single packet is the transmission unit handled by UDP. A feedback
channel allows the receiver to send report packets back to the transmitter. It
is used to obtain information about the channel status.

3.2 Application Layer Packet Header

A small amount of control data (i.e. a header) in order to allow decoding opera-
tions and rebuilding individual contents from the transport layer data flow has
been added to video packets. It is composed of 24 [byte], six Java integers, and
contains the following fields: FEC, the number of redundancy packets; Content
ID, a progressive number that identifies to which content (i.e., frame) the pay-
load data belongs to; Codeword Number, a progressive number identifying
the codeword which the packet belongs to; Sequence Number, a progressive
number that individuates the packet position within the codeword ; Content
Size, which specifies the number of bytes composing the content ; and Offset,
measured in bytes, which indicates the distance from the beginning of the con-
tent (i.e., the JPEG image) where the packet ’s payload must be written when
the content is rebuilt.

3.3 Transmitter and Receiver App

The transmitter App has the tasks: to acquire frames from the smartphone cam-
era; to compress them by using JPEG; to perform LDPC-encoding; to queue
codewords in the codeword buffer employed to regulate the transmission rate;
and to deliver them to the UDP transport protocol. The transmitter app is
composed of: streamer , performing data processing and transmission, and lis-
tener , managing the feedback information received by report packets. The lis-
tener enables the adaptive capabilities of the transmission, and exploits the feed-
back information to compute source-channel coding parameters and to adapt the
transmission rate to the maximum allowable throughput, as explained in Sect. 4.

The receiver App has a similar structure: a listener is bound to a particular
UDP port and stores the received packets. LDPC decoder acts when either (i)
the reception of a codeword is complete or (ii) a packet belonging to a more
recent codeword (i.e., a codeword with a higher Codeword Number) unexpect-
edly arrives. Once the content of the LDPC protected stream has been recov-
ered, JPEG frames are rebuilt and sequentially displayed on screen. Whenever
a decoding session is completed, a responder fills the associated report packet
and sends it to the transmitter.



Smartphones Apps Implementing a Heuristic Joint Coding 127

4 Heuristic-ALJC

Heuristic ALJC method proposed in this paper is aimed at solving heuristically
the problem formally defined in literature and represents the algorithmic core of
the implemented Transmitter App. The constraint R0 and the packet loss proba-
bility �k are usually unknown a priori and need to be determined. Our heuristic
ALJC solution is based on three phases: (i) transmission rate adaptation through
the employment of the report packets at the application layer; (ii) selection of
the channel coding parameters; (iii) selection of the source coding parameters.

Each report packet carries information about the number of lost packets for
each codeword and is sent each time a codeword is received. In this way, the
transmitter is aware of how fast the mobile network can deliver the video, i.e.,
the transmitter derives an estimation of the maximum network throughput cur-
rently available, and of how vulnerable to losses is the sent video in the process
of traversing the entire network. Concerning transmission rate adaptation, the
regulation is acted on the basis of the report packet reception that enables the
transmission of further codewords. Once the report packet for a given codeword
is received, the corresponding codeword is acknowledged and removed from the
codeword buffer. In case report packets are missing or delayed, the consequence
is that the codeword buffer may saturate. In this case the transmission of code-
word packets stops until a new report packet arrives so avoiding losing packets
in the codeword buffer but affecting the average transmission rate. The rationale
on the basis of this rate adaptation scheme is that, assuming the return chan-
nel reliable, the missing/delayed reception of report packets is interpreted as
errored/narrowband forward channel. In the case the transmission rate adapter
should not take any action, the transmission rate is limited to one codeword each
10 [ms]. Being a codeword composed of W [byte] (35 packets of 1024 + 24 [byte],
for payload and header respectively, the maximum possible transmission rate is
limited by the ratio W

10 [byte/ms]. Concerning the selection of source and channel
parameters, a single parameter is employed in the implemented Apps for both
source and channel coding. In the following, the mentioned parameters will be
denoted as s1k = Q and c1k = Rc. Rc is the ratio between the overall num-
ber of video packets (i.e. the CTT threshold) and the fixed codeword length W
(Rc = CTT threshold/W ). Rc is computed by Heuristic-ALJC and passed to
the LDPC channel coder. Established the CTT threshold value and estimated
through the arrival frequency of report packets the maximum network through-
put currently available, Heuristic-ALJC choses the best value of the JPEG coder
quality index Q and passes it to the JPEG coder. The main actions performed
by ALJC are evidenced in the left part of Fig. 1.

5 Performance Investigation

5.1 Testbed

We have implemented a testbed to emulate the reference scenario described in
the introduction. Two separate Android devices, implementing the transmitter



128 I. Bisio et al.

Fig. 1. Heuristic-ALJC actions

and receiver Apps, communicate through a WiFi local network connected to a
machine that emulates the effect of a mobile network. On the receiving side,
another WiFi network is used to interconnect the second device. The emulation
machine is a regular PC running a Linux-based operating system, and imple-
menting the netem tool to manage the outgoing traffic of each WIFI interface
by tuning available channel bandwidth, packet loss, bit error rate (BER), and
delay (fixed to 100 [mS] in all shown test).

5.2 Scenarios and Performance Metrics

Table 1 contains bandwidth and BER values for each emulated scenario.
In order to evaluate the performance, we have compared Heuristic-ALJC,

implemented through the two designed Apps, with two opposite static policies
assuring minimum protection/maximum quality (Rc = 30/35, Q = 100), and
maximum protection/minimum quality (Rc = 4/35, Q = 20). The first group
of tests evaluates Heuristic-ALJC behaviour during three minutes long sessions,

Table 1. Test scenarios

Bandwidth BER

A 400 Kbps 0 %

B 400 Kbps 10 %

C 400 Kbps 35 %

D 180 Kbps 0 %

E 180 Kbps 10 %

F 180 Kbps 35 %



Smartphones Apps Implementing a Heuristic Joint Coding 129

for static channel conditions. A second group of tests investigates the system
adaptation capabilities over time by varying network conditions. In order to
measure the quality of individual frames of the MJPEG sequence, we utilize the
Structural SIMilarity (SSIM) index, introduced in [10]. SSIM(fi, ̂fi) provides
a quality measure of one of the frames (̂fi) supposed the other frame (fi) of
perfect quality. SSIM represents a good choice since it follows the Mean Opinion
Score - MOS more closely than other indexes such as the Peak Signal to Noise
Ratio (PSNR) and the Mean Square Error (MSE). SSIM is computed over small
portions of a frame, and the whole frame index SSIM(fi, ̂fi) is obtained by
averaging the individual portion values. SSIM index ranges from 0 (completely
uncorrelated frames) to 1 (identical frames) and can be considered as a degrada-
tion factor. In order to evaluate the performance we have devised a performance
index with the following requirements. It must reward high quality frames, a flu-
ent video stream, and penalize corrupted or lost frames. Index I in (1) satisfies
such requirements

I =
∑U

i=1 SSIM(fi, ̂fi) · fTOT
received

Tsim
(1)

and can be interpreted as a quality-weighted average frame rate.

Fig. 2. Simulation of static channel behaviour



130 I. Bisio et al.

5.3 Performance Results

(1) Static Channel Scenarios: In this Section we show how our Heuristic-ALJC
behaves when channel characteristics do not vary over time. Figure 2 shows the
values of: Index I (a); average SSIM over the entire test (b); number of deliv-
ered good (decodable) frames (c); and number of lost/corrupted frames (d), for
Heuristic-ALJC, Minimum and Maximum Protection schemes, for scenarios from
A to F. The Maximum Protection scheme assures no loss (d) in all scenarios,
even in 10 % BER (B and E) and 35 % BER (C and F) scenarios, but it dedicates
so many packets to redundancy that the transmission rate of video frames is too
reduced. This implies a limited number of delivered frames (c). Index I is low for
any scenario. The Minimum Protection scheme behaviour may be satisfying for
no loss scenarios, even if the large Q value imposed implies large frame size and
consequent limited number of delivered frames (c), but it is highly inefficient for
loss scenarios, where the large number of corrupted frames (d) heavily affects
the quality (b) and consequently, Index I value (a). Heuristic-ALJC, by estimat-
ing the network available throughput over time, by tuning the protection level
and adapting the source coding, always outperforms static solutions concerning
Index I. It assures the highest number of successfully delivered frames (c) for all
scenarios, and keeps the number of lost/corrupted frames low enough so not to
affect the quality (b).

6 Conclusions

In this paper we have presented Heuristic-ALJC to transmit video streams on
networks characterized by time varying and possibly lossy channels. From the
practical viewpoint, Heuristic-ALJC adaptively applies both video compression
and encoding to protect video streams at the application layer on the basis of a
feedback about the overall network conditions, measured in terms of both maxi-
mum allowable network throughput and link quality (packet cancellations). The
performance investigation, carried out through the real implementation of the
Heuristic-ALJC over Android smartphones, shows that Heuristic-ALJC adapts
the video transmission to network conditions so allowing an efficient resource
exploitation and satisfactory performance and outperforming static coding under
all tested network conditions.

References

1. Fouda, M.M., Nishiyama, H., Miura, R., Kato, N.: On efficient traffic distribution
for disaster area communication using wireless mesh networks. Springer Wirel.
Personal Commun. (WPC) 74, 1311–1327 (2014)

2. Bisio, I., Grattarola, A., Lavagetto, F., Luzzati, G., Marchese, M.: Performance
evaluation of application layer joint coding for video transmission with smartphones
over terrestrial/satellite emergency networks. In: 2014 International Conference on
Communications (2014, to appear)



Smartphones Apps Implementing a Heuristic Joint Coding 131

3. Bisio, I., Lavagetto, F., Luzzati, G., Marchese, M.: Smartphones apps implementing
a heuristic joint coding for video transmissions over mobile networks. Mob. Netw.
Appl. 19, 552–562 (2014)

4. Choi, Y., Momcilovic, P.: On effectiveness of application-layer coding. IEEE Trans.
Inf. Theory 57(10), 6673–6691 (2011)

5. Bovik, A.C.: Handbook of Image and Video Processing (Communications, Net-
working and Multimedia). Academic Press Inc., Orlando (2005)

6. Bursalioglu, O., Fresia, M., Caire, G., Poor, H.: Joint source-channel coding at the
application layer. In: Data Compression Conference, 2009, DCC 2009, pp. 93–102,
March 2009

7. Martini, M., Mazzotti, M., Lamy-Bergot, C., Huusko, J., Amon, P.: Content adap-
tive network aware joint optimization of wireless video transmission. IEEE Com-
mun. Mag. 45(1), 84–90 (2007)

8. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962)

9. Planete-bcast, inria, ldpc codes download page. http://planete-bcast.inrialpes.fr/
article.php3?id article=16

10. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612
(2004)

http://planete-bcast.inrialpes.fr/article.php3?id_article=16
http://planete-bcast.inrialpes.fr/article.php3?id_article=16

	Smartphones Apps Implementing a Heuristic Joint Coding for Video Transmissions Over Mobile Networks
	1 Introduction
	2 State of the Art and Aim of the Paper
	3 Implemented Apps
	3.1 Preliminarily Definitions
	3.2 Application Layer Packet Header
	3.3 Transmitter and Receiver App

	4 Heuristic-ALJC
	5 Performance Investigation
	5.1 Testbed
	5.2 Scenarios and Performance Metrics
	5.3 Performance Results

	6 Conclusions
	References


