
A Semantic Algorithm Repository and Workflow
Designer Tool: Signal Processing Use Case

Sounak Dey(B), Dibyanshu Jaiswal, Himadri Sekhar Paul,
and Arijit Mukherjee

Innovation Lab, TCS, Kolkata, India
{sounak.d,dibyanshu.jaiswal,himadrisekhar.paul,mukherjee.arijit}@tcs.com

Abstract. Recently major emphasis is exerted on development of effec-
tive tools and techniques for enriching IoT development environment.
Typically an IoT application, for example a health monitoring appli-
cation, not only requires domain knowledge of a programmer, but also
similar knowledge from a medical practitioner, a sensor manufacturer, an
infrastructure manager, etc. Such involvement of several experts makes
the development process complex, resulting in escalation of time and cost
of the effort. Model Driven Development (MDD) has been proposed as a
development technique where such problem can be mitigated. This paper
presents a system based on the MDD paradigm. As a part of the sys-
tem, we present a work-flow designer framework, a visual drag and drop
interface, where a developer can stitch various functional models recom-
mended from a well-organized, annotated and crowd-sourced semantic
repository of algorithms (from various domains), named as Algopedia,
to quickly build a semantic workflow and in turn an end to end IoT
application.

Keywords: Algorithm ontology · Algorithm repository · Semantic
workflow · Workflow design · Signal processing · Model driven
development

1 Introduction

As we are progressing towards the age of Internet of Things (IoT), the number
of deployed connected objects across the world are increasing tremendously and
is predicted to reach a count of 4.9 billion today to about 25 billion by 2020 [7].
As a consequence, an avalanche of data is hitting our servers, gateways every-
day, every moment. But mere capturing such data does not make much sense
unless one can analyze and find useful insights from such data and use them in
IoT based applications to solve different use cases in domains like healthcare,
education, transportation etc. Compared to traditional IT systems, developing
such analytical applications for IoT is a difficult process as dependencies exist
on a very diverse set of skills like knowledge of sensor/things, signal processing
on sensor observation, knowledge of algorithms for analyzing such data, find-
ing semantics of data etc. This requires involvment of experts of sensor, algo-
rithm, infrastructure, programming, knowledge modelling, domain etc. Clearly,
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 53–61, 2016.

DOI: 10.1007/978-3-319-47075-7 7



54 S. Dey et al.

this process involves too many stakeholders and requires application developer
to know each subject to some depth. Practically this slows down the process of
development.

A Model-Driven-Development (MDD) paradigm for IoT application develop-
ment is one interesting approach which advocates separation of concerns among
different stakeholders by introducing re-usable metamodels for IoT system and
then automating the development process by stitching required models rele-
vant to a solution; thus augmenting capability of developer and minimizing
development time. This also enhances reusability of models. Pal et al. in [15]
proposed a concept for MDD by creating metamodels for sensors/things, algo-
rithms, infrastructure, domain etc. Based on that cenceptual metamodels, we
have created a framework for quick application development in IoT domain.
The framework consists of 1. a tool for creating and editing semantic algorithm
repository and 2. a recommendation based workflow generation and execution
tool. The second tool helps stitching the recommended algorithms (created using
first tool) for a paticular IoT use case. In this paper, these two key developments
for MDD for IoT has been discussed in details using one example of sensor signal
processing use case. The rationale behind choosing a sensor signal processing use
case are: (i) most IoT applications are expected to process signals received from
sensors, and (ii) usefulness of semantic repository and workflow generation tool
can be best exhibited by this use case as it involves many substeps like sampling,
signal extracting, feature selection etc.

Following section discusses other relevant works in this field. In Sects. 3 and
4, detailed architechture of the system and its working is explained respectively
while in Sect. 5 we conclude with future works.

2 Relevant Works

There are many works related to algorithm repositories and workflow designer
tools. We found that most of the algorithm repositories come with a workflow
designer tool associated with them; but vice versa is not always true. Algorithmia
[8] is a work that falls in first category. It comes with a tool for submission
of new algorithms but it lacks depth in terms of variety and count. Also it
does not recommend algorithms while creating a workflow. Caiman [16] is an
online algorithm repository with very limited set of image processing algorithms
focussed only for cancer research. Stony Brook Algorithm repository [17] is a
very comprehensive algorithm repository but it does not facilitate creation of
workflow. There is an algorithm ontology called OpenTox [2] targeted to create
models for detecting chemical toxicity; this can be externally connected to our
ontology to enrich it, but its structure is not exhaustive and generic enough to
accomodate various types of algorithms used in IoT domain.

On the second category of works, Galaxy [10] is a genome data based work-
flow creation and execution system but it has its proprietary execution platform
thus restricting variety in workflow designing. Wotkit [9] is another online tool
which helps user add sensor, capture and visualize data and create custom IoT



Semantic Workflow 55

application based on widgets exposed as REST APIs, but does not allow any
features like processing and analysis of data. There are some cloud based IoT
application development frameworks like Axeda [3], BlueMix [1], ThingWorx [5]
etc. which have features like device management and configuration, cloud appli-
cation development, connectivity service provisioning and management; but they
lack in standard algorithm repository and semantic search and recommendation
during workflow designing. In the next section, overall architechture of the sys-
tem is presented.

3 System Architechture

As shown in Fig. 1, the system has three main components: 1. Algopedia: an
annotated algorithm repository. 2. Web Based UI for creating/modifying Algo-
pedia. 3. A web based workflow designing and execution tool.

Fig. 1. Architecture diagram

3.1 Algopedia

Algopedia consists of three distinct parts: an algorithm ontology, a repository
and a reasoner module. The core ontology structure has been created using Pro-
tege 4.0 [4]. Basic algorithm classes like Machine Learning, Statistical Analy-
sis, Filtering etc. and their subclasses are captured here. Other related entities
like Features, SignalType etc. are also defined here along with associated rules,
restrictions and annotations (refer Fig. 2). This ontology contains pseudocodes
associated with algorithm classes. The structure and elements of this ontology
provides the basic model for algorithms. This core ontology can be enriched with
more algorithm classes, relations and annotations by mining relevant information
from web and by crowd sourcing from algorithm domain experts.

Based on the algorithm models in this ontology and following the pseudocodes
therein, a repository of implemented working code is created. Any coder who



56 S. Dey et al.

Fig. 2. Relations and entities around algorithm class

have implemented a code instance following an algorithm pseudocode can sub-
mit his/her work in this repository with proper annotations. To elaborate, algo-
rithm class Filter and its subclass BandPassFilter are created by algorithm
domain expert and is stored in Algopedia ontology along with their respective
pseudocodes. If somebody implements a bandpassfilter.c based on BandPass-
Filter pseudocode then that particular code implementation goes to algorithm
repository and stays as an individual (also called instance) of BandPassFilter
class. Same BandPassFilter pseudocode can be implemented in different lan-
guages (like C, R, Java etc.) by different coder with different code complexities;
the repository can accomodate each of them and all such instances will be asso-
ciated with the class of BandPassFilter. This instance repository can again be
enriched by web mining, crowd-sourcing and by feedbacks from users of the
instances.

The reasoner module in Algopedia works both on algorithm ontology and
repository. This module 1. validate correctness of ontology and repository after
a new entry is made or after a round of enrichment via web/experts/coders and
2. can recommend a set of ranked algorithms most suitable for given criteria like
signal type, feature type etc.

3.2 Web Based User Interface (UI)

Purpose of this web based user interface is to allow algorithm code writers to sub-
mit their instance of an algorithm implementation in Algopedia repository along
with relevant annotation and metadata like author name, library dependencies,
compiler version, input/output parameter details etc. This user interface can also
be used to edit/modify aforesaid details of instances those are already there in
the repository. Figure 3 shows a snapshot of this UI. The UI submits and fetches
data from algorithm repository using REST APIs. This user interface is dynami-
cally bound with the underlying Algopedia ontology. This means: the right panel
in (Fig. 3) is created dynamically as per properties defined in ontology. If a prop-
erty of an Algorithm class changed or a new property is added, then the changes
automatically reflects back in UI as a text box or combo box (depending on the



Semantic Workflow 57

Fig. 3. Algopedia user interface

nature of the property). This is achieved without any re-coding done at user
interface end. To and fro of data from repository to UI is carried in the form of
JSON and the structure of JSON along with some annotations dictates how the
user interface will looks.

3.3 Workflow Designing and Execution Tool

To use algorithm instances for practical problems, a customised workflow gen-
eration tool based on Node-RED [6] is used. This has a web based user inter-
face where developers can drag and drop nodes, select their choice of algorithm
instances (based on recommendation) and can stitch them to complete a work-
flow. Once completed and deployed the workflow is converted into JSON struc-
ture, using which “Workflow Code Generation” block creates an executable code.
This can be executed in a local execution platform when supplied with proper
data.

In following section, a detail description of how the system works is explained
using a signal processing domain use case.

4 Detail Description of Working of System

We have already mentioned that algorithm developers from various domains
should contribute to the Algopedia repository via the Algopedia UI. With the
Algopedia repository at hand, one can easily develop a workflow by making use
of some custom nodes provided in the workflow designing tool. From the purview
of an application developer in the context of a signal processing domain, an end-
to-end working of the system is discussed here. A standard signal processing



58 S. Dey et al.

Fig. 4. Workflow designer tool

solution follows stages like: Sampling → Signal Extractor → Preprocessing →
Signal Quality Checker → Feature Selection and Modelling → Post Processing
→ Output. Corresponding workflow may look like one shown in Fig. 4a. The
above sequence of stages can be considered as a template workflow for a sig-
nal processing domain, which can be further modified by adding or deleting
different nodes. Newly formed workflows can again be stored as template work-
flows and can be recommended to other users. In order to create this workflow,
developer needs to use some (one or more) custom-nodes (Fig. 4b) like Sen-
sorSelector, AlgorithmRecommender, FeatureSE, DisplayData etc. from the list
of custom-nodes provided in a separate palette called MDD, on the left hand
pane of the designer tool. In SensorSelector node, user can semantically dis-
cover a sensor from a list of live sensors (capable of sending data) attached
to the system and then collect data to pass on to next node in the workflow.
A sensor ontology has been defined [12] at the backend to support the func-
tionality of this node. AlgorithmRecommender node (refer Fig. 5a) enables
developer to select a stage (like pre-processing, post-processing, signal quality
checker etc.) of execution, the data type of the incoming signal (like periodic-
stationary, aperiodic-nonstationary etc.) and the type of algorithm (from a list
populated from ontology). On the basis of these three parameters, the node rec-
ommends a list of ranked algorithm instances from the Algopedia repository.
Designer can select one such algorithm from this list which will be executed on
the incoming data when the flow is triggered. Designer can also provide a name
(like “My Pre-Processing”) to identify this customised node.

The MDD palette provides another node named FeatureSE to apply feature
extraction and selection on the data wherever required in the workflow (refer
Fig. 5b). Feature selection can be done via a variety of methods such as SVM,
PCA, MIC etc. Developers can make a choice among these options to decide how
they want to train the model for their application. Each such machine learning
technique requires a training data that can be uploaded by the developer to



Semantic Workflow 59

Fig. 5. Functionality of nodes

train and obtain a model corresponding to the feature selection method chosen.
On the server end, the training data is used to find plausible features from the
dataset and hence train the model in turn. Once the training is complete, the
server returns a set of features extracted from the training dataset, along with the
trained model exposed as a webservice to be used later during the execution of
workflow. The set of features returned during this stage are listed along with a set
of algorithms recommended by Algopedia for further processing. A combination
of such AlgorithmRecommender and FeatureSE nodes are used to create the full
workflow of algorithms to be executed. Along with these, Gluecode node can
be used for tweaking the output of one node before entering another node as an
input, or for incorporating some more computational code specific to user’s need
and for other similar purposes. DisplayData node is another useful node in
MDD palette. This is used for visualizing data at any intermediate stage during
workflow designing. This node supports plotting of data from various sources
like URL, data file and previous node.

Each configured node in the workflow bundles the set of metadata informa-
tion (like algorithm name and signature, dependent libraries, path of executable
file etc.) in a form of JSON object and passes on to the next node in sequence. At
the end, the whole JSON containing the sequence and metadata is forwarded to
the ExecuteFlow node which parses it and executes them in sequence to obtain
the final results. If the results seems to be satisfactory to the developer, they can
register their workflow back into the algopedia repository, or else can reconfigure
the algorithms and other nodes for better results. The job of the developer is to
drag and drop the nodes of his/her choice to the worksheet, stitch them together
in desired sequence, configure them and deploy and trigger the workflow.



60 S. Dey et al.

5 Future Works

Our algorithm repository has good set of algorithms for machine learning, filter-
ing, signal processing and a basic set of math libraries; but it can be enriched
with other class of algorithms catering broader set of problems. Automated com-
pletion of a semantically correct and contextual workflow [13] is another aspect
which could be a desired feature for our workflow designer tool. The framework
described here is focussed at IoT problem domain, but it can be reused in dif-
ferent domains like banking, genetics, biochemistry etc. given that the domain
knowledge can be modelled and incorporated into the system as envisaged in
[15]. At present, execution of the workflow is done locally in a PC. Based on
an algorithm requirement for computational resources the whole workflow can
be partitioned into smaller units to be executed in a distributed manner across
cloud, PC, handheld devices, gateways etc [14]. Works like Wings [11] which
enables execution of semantic workflow in a condor based platform can guide us
in this respect.

References

1. IBM Bluemix. www.ibm.com/software/bluemix/welcome/solutions2.html.
Accessed 15 June 2015

2. OpenTox. http://www.opentox.org/dev/apis/api-1.1/Algorithms. Accessed 01
Sept 2015

3. PTC Axeda IoT Platform. http://www.ptc.com/axeda/product/iot-platform.
Accessed 01 Sept 2015

4. Protege 4.0 (2006). http://protege.stanford.edu/. Accessed 01 Sept 2015
5. ThingWorx IoT Platform (2009). http://www.thingworx.com/. Accessed 01 Sept

2015
6. NodeRED (2013). http://nodered.org/. Accessed 01 Sept 2015
7. Gartner Says 4.9 Billion Connected Things Will Be in Use in 2015 (2014). http://

www.gartner.com/newsroom/id/2905717. Accessed 01 Sept 2015
8. Algorithmia (2015). https://algorithmia.com/. Accessed 01 Sept 2015
9. Blackstock, M., Lea, R.: IoT mashups with the WoTKit. In: 2012 3rd International

Conference on Internet of Things (IOT), pp. 159–166. IEEE (2012)
10. Blankenberg, D., Kuster, G.V., Coraor, N., Ananda, G., Lazarus, R., Mangan,

M., Nekrutenko, A., Taylor, J.: Galaxy: a web-based genome analysis tool for
experimentalists. Curr. Protoc. Mol. Biol. 19–10 (2010)

11. Deelman, E., Moody, J., Kim, J., Ratnakar, V., Gil, Y., González-Calero, P.A.,
Groth, P.: Wings: intelligent workflow-based design of computational experiments.
IEEE Intell. Syst. 1, 62–72 (2011)

12. Dey, S., Jaiswal, D., Dasgupta, R., Misra, A.: A semantic sensor network (SSN)
ontology based tool for semantic exploration of sensor. Semant. Web Chall. Com-
pet. ISWC (2014)

13. Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow genera-
tion using declarative modeling for processes in software engineering. In: 2011 15th
IEEE International Enterprise Distributed Object Computing Conference Work-
shops (EDOCW), pp. 164–173. IEEE (2011)

www.ibm.com/software/bluemix/welcome/solutions2.html
http://www.opentox.org/dev/apis/api-1.1/Algorithms
http://www.ptc.com/axeda/product/iot-platform
http://protege.stanford.edu/
http://www.thingworx.com/
http://nodered.org/
http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2905717
https://algorithmia.com/


Semantic Workflow 61

14. Mukherjee, A., Paul, H., Dey, S., Banerjee, A.: Angels for distributed analytics in
IoT. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 565–570,
March 2014

15. Pal, A., Mukherjee, A., Balamuralidhar, P.: Model driven development for internet
of things: towards easing the concerns of application developers. In: International
Conference on IoT as a Service, IoT360 Summit, Rome (2014)

16. Reyes-Aldasoro, C.C., Griffiths, M.K., Savas, D., Tozer, G.M.: Caiman: an online
algorithm repository for cancer image analysis. Comput. Methods Prog. Biomed.
103(2), 97–103 (2011)

17. Skiena, S.: Who is interested in algorithms and why? Lessons from the Stony Brook
algorithms repository. ACM SIGACT News 30(3), 65–74 (1999)


	A Semantic Algorithm Repository and Workflow Designer Tool: Signal Processing Use Case
	1 Introduction
	2 Relevant Works
	3 System Architechture
	3.1 Algopedia
	3.2 Web Based User Interface (UI)
	3.3 Workflow Designing and Execution Tool

	4 Detail Description of Working of System
	5 Future Works
	References


