
On Integrating Heterogeneous Locating Services

Hiroki Takatsuka(B), Sachio Saiki, Shinsuke Matsumoto,
and Masahide Nakamura

Graduate School of System Informatics, Kobe University, Kobe, Japan
tktk@ws.cs.kobe-u.ac.jp, sachio@carp.kobe-u.ac.jp,

{shinsuke,masa-n}@cs.kobe-u.ac.jp

Abstract. This paper presents a unified locating service, KULOCS,
which horizontally integrates the existing heterogeneous locating ser-
vices. Focusing on technology-independent elements [when], [where] and
[who] in querying locations of objects, KULOCS integrates data and
operations of the existing services. In the data integration, we propose a
method where the time representation, the locations, the namespace of
user are consolidated by Unix time, the location labels and the alias table,
respectively. We then propose KULOCS-API that integrates operations
by all possible combinations of [when], [where] and [who]. Since KULOCS
works as a seamless façade to the underlying locating services, clients
can consume location information easily and efficiently, without know-
ing concrete services actually locating target objects. Also, we examine
feasibility of two practical value-added services with KULOCS.

Keywords: Locating service · Indoor positioning system · Location
information · Web services · Location-aware service

1 Introduction

Smart coupling of IoT, positioning systems and cloud technologies enables an
extensible infrastructure to acquire and manage locations of users and objects.
Nowadays, every smartphone is equipped with GPS. Also, various GPS modules
for IoT appear on the market (e.g., [4]). The emerging indoor positioning systems
(IPS) can locate users even inside buildings or underground, where GPS cannot
cover. The enabling technologies of IPS include Wi-Fi [6], Bluetooth beacons
[10], RFID [12], IMES [11]. Gathering such indoor/outdoor location information
in the cloud would create a variety of location-based services and applications.

The location information gathered in the cloud should be provided as a ser-
vice, so that client applications can easily consume the locations via API, without
knowing implementation details of underlying positioning systems. We call such
a cloud service locating service in this paper. In fact, several practical services
come onto market recently. They include Swarm [7], Glympse [1], Pathshare
[5], and IndoorAtlas [2]. Although features and operation policies vary from one
to another, the basic idea is to use the cloud for exchanging or sharing location

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 44–52, 2016.

DOI: 10.1007/978-3-319-47075-7 6



On Integrating Heterogeneous Locating Services 45

information acquired by a certain positioning system. Most services provide API
for developers.

Basically, there is no compatibility among different locating services and API,
since they are individually developed and operated. Each service is tightly cou-
pled with the underlying positioning system. For example, Glympse assumes to
use GPS information collected by smartphones, while IndoorAtlas use a mag-
netic field to locate the position inside a building. Thus, Glympse cannot directly
use the data of IndoorAtlas, and vice versa. In order to cover both indoor and
outdoor locations, one may want to integrate these two services. However, the
lack of compatibility forces the application developer to use different API, and
to perform expensive data integration within the application.

Figure 1 shows the conventional architecture to integrate the existing locat-
ing services. Let us assume an application, say “where-are-you?”, with which a
user A queries the location of another mobile user B. The user B is either inside
or outside of any building, and is supposed to be located by a certain locating
service. Then, “where-are-you?” executed by A invokes different API for all pos-
sible locating services, in order to find B. Although A’s the query “Where is B?”
is essentially simple, the application has to know how to query and interpret the
location for individual locating services, respectively. This makes the application
quite complex, low-performance, and non-scalable.

To cope with the problem, we propose in this paper a unified locating service,
called KULOCS (Kobe-university Unified LOCating Service). KULOCS horizon-
tally integrates the existing heterogeneous locating services, and provides an
abstraction layer between the applications and the locating services. To make
location queries compatible among many locating services, we design KULOCS
with three technology-independent elements [when], [where] and [who].

Based on the three elements, KULOCS integrates data and operations of
the heterogeneous locating services. In the data integration, we propose a

Fig. 1. Conventional architecture to integrate locating services



46 H. Takatsuka et al.

method that different representation of time, heterogeneous locations and differ-
ent namespace of a user are consolidated by Unix time, location labels and alias
table, respectively. The location labels consist of local label and global label,
which abstract concrete coordinates of IPS and GPS, respectively. A user of
KULOCS queries every location by a label, whereas KULOCS internally con-
verts the label to specific representation for individual locating services.

For the operation integration, we propose KULOCS-API, which integrates
heterogeneous operations by possible combinations of [when], [where] and [who].
The API is deployed as Web service, so that applications on various platforms can
easily consume KULOCS. For example, the query “Where is B?” of “where-are-
you?” is simply implemented by http://kulocs/where?user=B&time=now. For
this, the application needs not to know how B is located by which service. Thus,
the application can consume location information quite easily and efficiently.

To show the practical feasibility of KULOCS, we examine two practical value-
added services with KULOCS. One example is Seamless Locating Service, which
allows a user to locate a mobile object in either indoor or outdoor space. The
another example is Personalized Location-Aware Service. A user can create and
customize own location-aware services by associating a location and an action.
We discuss how these two services can be implemented by KULOCS.

2 KULOCS (Kobe-University Unified Locating Service)

2.1 Overview

We propose KULOCS (Kobe-university Unified LOCating Service) in this
section. Figure 2 shows its architecture. KULOCS works as a façade of the het-
erogeneous locating services. It provides the unified interface (KULOCS-API)
for a user, by which the user can access to different locating services seamlessly,

Fig. 2. Architecture of KULOCS



On Integrating Heterogeneous Locating Services 47

without being aware of the difference of individual services. Since KULOCS is an
abstract layer that integrates heterogeneous locating services, we have to achieve
the followings:

Data Integration: Individual locating services represent location information
in different ways. Hence, KULOCS must exploit unified location data repre-
sentation that is independent of any specific service or positioning system.

Operation Integration: Also, individual locating services exhibit own opera-
tions in terms of API, which vary from a service to another. KULOCS needs
to integrate them and provide generic API (i.e., KULOCS-API) to a user.

Our key idea to achieve the above integration is to focus the following technology-
independent elements necessary for any services to locate an object:

When: Represent the date and time when the target object exists.
Where: Represent the location where the target object exists.
Who: Represent the identity of the target object.

KULOCS is designed to accept generic location queries based on possible combi-
nations of the above three elements. KULOCS then translates the generic query
to service-specific queries for individual services.

2.2 Data Integration

We here describe how to integrate location data of heterogeneous locating ser-
vices. To help understanding, let us consider the following data records.

– L1: {time:2015-06-21T08:50:12+0900, user:tktk, location: {lati-
tude: 35.4313, longitude:135.147, address:"1-1 Rokkodai Nada
Kobe Japan"}}

– L2: Takatsuka is now in (3.0, 4.5, 0.5) from entrance of ShopABC.
– L3: Mon Jun 29 15:49:34 CEST 2015, Object123, KobeUniv.Lab.S101

L1 describes a location of user tktk by a geographic coordinate, where we imagine
the data is taken by a GPS-based service. L2 would be obtained by a fine-
resolution IPS, which represents the current position of Takatsuka by 3D offset
from a reference point. L3 describes that Object123 is in room S101 of our
laboratory, which may be located by a certain zone-based IPS. Note that L1, L2
and L3 respectively use different time representation (and time zone).

To integrate these heterogeneous locations, we consider the elements [when],
[where], [who]. As for [when], it is easy to introduce the common representation
with the Unix time stamp, which is the number of seconds elapsed from January
1st, 1970 at UTC. KULOCS deals with any time information by Unix time.

As for [where], there are many ways and different granularity levels to rep-
resent a location. The GPS coordinate looks generic representation that can
describe exact locations. However, it is too detailed for a user to specify it as a



48 H. Takatsuka et al.

parameter of location queries. Also, the GPS coordinate is not useful for indoor
locations, which are often relative coordinates from the reference point.

To compromise different granularity levels and various use cases, we propose
to represent every location by a location label. A location label is a unique string
that is bound for a location information. Just for convenience, we introduce two
kinds of labels: local label and global label. The local label is a string, written in
position@building, to be used to represent an indoor location. In the string,
building represents the ID of a building, and position represents the name of
the position in the building. For example, a local label casher@ShopABC is used
to refer to the location in L2. On the other hand, the global label is a string
without @, to be used to represent an outdoor location. For example, we can
bind a global label kobe univ to the location in L1.

Thus, KULOCS represents every location by a location label. It internally
maintains binding between a label and actual location information with the
location table shown in Table 1. We assume that the location labels are registered
in the table by users in a crowd-sourcing fashion, and shared among the users.

Finally, as for [who], since every locating service has different namespace for
users and objects, KULOCS has an alias table, which consolidates different IDs
for the same user (or object) into a single unique ID. For example, let us recall L1,
L2 and L3, and suppose that all of tktk in L1, Takatsuka in L2, and Object123 in
L3 refer to the same person “hiroki”. Then, the alias table contains an element:
{"id":"hiroki", "alias":{"L1":"tktk", "L2":"Takatsuka", "L3":"Object123"}.
With this information, KULOCS converts the representative name hiroki into
a real user id when querying each of locating services. The integration of IDs can
be also implemented with common identity services (e.g., OpenID [3]). However,
it is beyond this paper.

Based on the above design principle, KULOCS unifies L1, L2 and L3 as
shown in Table 2. Through KULOCS, the location data from any locating service
is unified into the abstract location data with [when], [where] and [who].

Table 1. Location table of KULOCS

Loc. label (PK) Service Actual location info.

kobe univ gps01 {latitude: 35.4313, longitude:135.147,

address:"1-1 Rokkodai Nada Kobe Japan"}
casher@ShopABC ips01 ShopABC, (3.0, 4.5, 0.5)

S101@kobe univ ips02 KobeUniv.Lab.S101

Table 2. Data integration of L1, L2 and L3

Data ID When/time Where/location Who/ID

L1 1434869412 kobe univ hiroki

L2 1435592713 casher@ShopABC hiroki

L3 1435585774 S101@kobe univ hiroki



On Integrating Heterogeneous Locating Services 49

2.3 Operation Integration

We then propose KULOCS-API, which integrates heterogeneous operations of
the existing locating services. Basically, KULOCS-API is the interface for query-
ing KULOCS about a location of a mobile user (or object). The way of the query
must be technology-neutral and independent of any specific locating services.
Therefore, we again focus on the elements of [when], [where] and [who].

Table 3. List of methods in KULOCS-API

Method Description

when(location, id) Returns the latest time when the object is in the location.

where(time, id) Returns the location where the object exists in the time.

who(time, location) Returns all objects who exist in the location in the time.

whenwhere(id) Returns a list of [time, location] where the given object exists.

whenwho(location) Returns a list of [time, id] that exist in the given location.

wherewho(time) Returns a list of [location, id] are located within the given time.

According to the possible combinations of the three elements, we derived
six methods for KULOCS-API, as shown in Table 3. For example, where(time,
id) is for asking [where] based on known time (i.e., [when]) and id (i.e., [who]).
Thus, a user can invoke where(NOW, B) to know “Where is B (now)?”. To achieve
programmable interoperability, we publish KULOCS-API as a Web service, and
deploy it in a cloud. For example, the method invocation where(NOW, B) can
be performed in REST format http://kulocs/where?time=NOW&id=B.

Once a method of KULOCS-API is invoked, KULOCS internally converts
the method invocation into an appropriate API call for each locating service
(see Fig. 2). For the purpose of the method conversion, KULOCS manages the
service database. Figure 3 shows the ER diagram of the service database.

Fig. 3. ER diagram of KULOCS service database



50 H. Takatsuka et al.

The service database has three entities: service, api and param. The ser-
vice entity manages master information of all the underlying locating ser-
vices. The information includes a name, an endpoint of the service, a type
of the return value. In Fig. 3, we can see that there are two locating ser-
vices (LOCS4Geolocation, iBeaconLocator) registered. For each service, the api
entity manages the mapping from the six methods of KULOCS-API to actual
API in the service. In Fig. 3, we can see that where() method is mapped into
getLocation() for gps01 (i.e., LOCS4Geolocation). The param entity manages
the mapping and order of parameters within every method of KULOCS-API
and the ones within the actual API call. For example, we can see, in Fig. 3, that
time and id parameters of where(time, id) method are respectively passed to
time and user parameters of getLocation(user, time) of gps01. Thus, the
method can be converted.

Figure 4 shows a sequence diagram, where the user executes where(NOW, B)
of KULOCS-API. In this scenario, KULOCS first finds a service gps01 from
the service DB, and then identifies getLocation() API and its parameters
user and time. Next, KULOCS looks up the alias table to convert the id of
“B” into the local name “tktk” within gps01. Next, it invokes getLocation()
of LOCS4Geolocation service with tktk and the current time, to locate tktk.
Finally, the obtained location information is converted into a location label with
the location table. Finally, the label kobe univ is returned to the user, as the
answer of where(NOW, B). Similarly, KULOCS can invoke other locating services
for where(NOW, B). However, the sequences are omitted due to limited space.

Fig. 4. Sequence diagram of KULOCS-API, in which where(NOW, B) is executed



On Integrating Heterogeneous Locating Services 51

2.4 Implementation

We are currently implementing KULOCS as a Java Web service. The imple-
mentation details and evaluation are left for our future publications. We are
also interested in pragmatic issues, including security and privacy policies in
location-based services. These are also planed for our future research.

3 Creating Value-Added Services with KULOCS

The proposed KULOCS unifies heterogeneous locating services, seamlessly. We
examine here two practical services enabled by KULOCS.

Seamless Locating Service: For a given ID of a registered mobile user, this
service locates the user regardless the user is in indoor or outdoor place. Although
this service uses all possible locating services, there is no need to take care of
proprietary communications, thanking KULOCS.

Personalized Location-Aware Service: KULOCS allows a user to easily
evaluate location context, which returns true when the user come to a pre-
registered location. Binding a location context and a certain action implements
a location-aware service. If a system allows the user to register favorite locations
and binding rules, it implements personalized location-aware services. For exam-
ple, when the user gets close to home, the lights are turned on. When the user
sits on a sofa in a living room, a music is automatically played back.

4 Related Work

Ficco et al. [9] proposed a hybrid location system, which combines wireless fin-
gerprinting technologies for indoor positioning together with GPS-based posi-
tioning for outdoor localization. As a user moves to different places, the sys-
tem autonomously switches to available positioning method supported by the
mobile device and the surrounding environment. This study mainly focuses on
the switching mechanism in the mobile clients. Thus, the difference is that they
try to integrate different positioning systems within client side, which relies on
the capability of the device. On the other hand, we try to integrate them within
the server side, which does not rely on any capability of clients.

Ahn and Nah [8] proposed a web service framework based on service-oriented
architecture, called LOCA. It discovers best-available Web services based on
client location information and preference. Thus, a client can dynamically find,
integrate and consume Web service available in the current location. The differ-
ence is that LOCA provides a location-based service discovery, while KULOCS
provides a location query portal for any location-based services. In this sense,
LOCA can exploit KULOCS for more extensive location management.



52 H. Takatsuka et al.

Acknowledgements. This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for Scientific Research (B)
(Nos. 26280115, 15H02701), Young Scientists (B) (No. 26730155), and Challenging
Exploratory Research (15K12020)].

References

1. Glympse. https://www.glympse.com/
2. IndoorAtlas. https://www.indooratlas.com/
3. OpenID. http://openid.net/specs/openid-connect-core-1 0.html
4. OriginGPS. http://www.origingps.com/
5. Pathshare. https://pathsha.re/
6. Skyhook. http://www.skyhookwireless.com/
7. Swarm by foursquare. https://www.swarmapp.com/
8. Ahn, C., Nah, Y.: Design of location-based web service framework for context-

aware applications in ubiquitous environments. In: 2010 IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 426–433

9. Ficco, M., Palmieri, F., Castiglione, A.: Hybrid indoor and outdoor location ser-
vices for new generation mobile terminals. Pers. Ubiquit. Comput. 18(2), 271–285
(2014)

10. Kohne, M., Sieck, J.: Location-based services with ibeacon technology. In: 2014
2nd International Conference on Artificial Intelligence, Modelling and Simulation,
pp. 315–321

11. Manandhar, D., Torimoto, H.: Opening up indoors: Japan’s indoor messag-
ing system, IMES (2011). http://gpsworld.com/wirelessindoor-positioningopening-
up-indoors-11603/

12. Ting, S., Kwok, S.K., Tsang, A.H., Ho, G.T.: The study on using passive RFID
tags for indoor positioning. Int. J. Eng. Bus. Manag. 3, 9–15 (2011)

https://www.glympse.com/
https://www.indooratlas.com/
http://openid.net/specs/openid-connect-core-1_0.html
http://www.origingps.com/
https://pathsha.re/
http://www.skyhookwireless.com/
https://www.swarmapp.com/
http://gpsworld.com/wirelessindoor-positioningopening-up-indoors-11603/
http://gpsworld.com/wirelessindoor-positioningopening-up-indoors-11603/

	On Integrating Heterogeneous Locating Services
	1 Introduction
	2 KULOCS (Kobe-University Unified Locating Service)
	2.1 Overview
	2.2 Data Integration
	2.3 Operation Integration
	2.4 Implementation

	3 Creating Value-Added Services with KULOCS
	4 Related Work
	References


