
Distributed Neural Networks for Internet
of Things: The Big-Little Approach

Elias De Coninck(B), Tim Verbelen, Bert Vankeirsbilck, Steven Bohez,
Pieter Simoens, Piet Demeester, and Bart Dhoedt

Department of Information Technology, Ghent University – iMinds,
Gaston Crommenlaan 8/201, 9050 Gent, Belgium

elias.deconinck@intec.ugent.be

Abstract. Nowadays deep neural networks are widely used to accu-
rately classify input data. An interesting application area is the Inter-
net of Things (IoT), where a massive amount of sensor data has to be
classified. The processing power of the cloud is attractive, however the
variable latency imposes a major drawback in situations where near real-
time classification is required. In order to exploit the apparent trade-off
between utilizing the stable but limited embedded computing power of
IoT devices and the seemingly unlimited computing power of Cloud com-
puting at the cost of higher and variable latency, we propose a Big-Little
architecture for deep neural networks. A small neural network trained to
a subset of prioritized output classes is running on the embedded device,
while a more specific classification is calculated when required by a large
neural network in the cloud. We show the applicability of this concept
in the IoT domain by evaluating our approach for state of the art neural
network classification problems on popular embedded devices such as the
Raspberry Pi and Intel Edison.

Keywords: Deep neural networks · Distributed intelligence · Internet
of things

1 Introduction

Currently, the Internet of Things (IoT) is a popular paradigm that envisions
a world in which all kinds of physical objects or “things” are connected to the
Internet, interact with each other and cooperate to reach common goals [1]. This
idea goes beyond machine-to-machine communications (M2M), as it covers not
only communication protocols, but also the application domains and the services
running on top of these connected things. By providing easy access to a myriad
of devices such as sensors, surveillance cameras, home appliances, cars, actuators
etc., the IoT will enable a new range of applications and use cases in the field
of domotics, assisted living, logistics, smart environments, manufacturing, and
many more.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 484–492, 2016.

DOI: 10.1007/978-3-319-47075-7 52



The Big-Little Approach 485

In order to create truly smart applications for the IoT, massive amounts of
data coming from all connected things will have to be processed and analysed
into actionable and contextualized information [8]. Currently, the Cloud is most
often the natural choice to perform this data processing, benefiting from the huge
computing power and scalability [15]. However, the Cloud is not a silver bullet
solution, as a network connection to a Cloud datacenter often suffers from high
and variable latency, as well as limited upload bandwidth [2]. Moreover, extensive
Cloud processing incurs considerable cost for renting infrastructure. Therefore,
our goal is to first use local computing power in the various embedded devices
and gateways for data processing, before turning to the Cloud. This addresses
the problem associated with network connectivity (latency and bandwidth) while
also reducing operation cost.

A very important processing step in IoT applications is classification, i.e.,
determining the system “state” and its subsequent actions based on (sequences
of) sensory data. A promising state-of-the-art technique in this field is the use
of a Deep Neural Network (DNN), which offers a biologically inspired trainable
architecture that can learn various invariant features [18]. As a neural network is
trained by iteratively evaluating input samples and updating the neural network
weights, one often relies on efficient GPU implementations that can exploit the
parallelism and speedup neural network evaluation. However, the CPU power
and internal memory available on an embedded IoT device imposes an upper
limit on the size of neural networks that can be evaluated with sufficiently high
throughput.

The contributions presented in the current paper is a Big-Little architec-
ture for neural networks, that is tailored to the specific characteristics of IoT
environments. The idea is to take a large trained neural network for a certain
classification problem, and from that distil a smaller neural network that only
classifies a well chosen subset of the output space. The little neural network is
suited to be executed locally on the embedded devices, whether the input is
also sent to the Cloud, for evaluation with the big neural network, is upto the
application specific demands.

The rationale for this idea is the following. Consider a smart home environ-
ment that is monitored by a large number of sensors and some actuators to
trigger an alarm, start the heating system, detect fire or leaks, etc. Some situa-
tions are critical to detect fast while others need a reliable response before taking
a direct action. For example stop the robot before bumping into a domestic cat
that popped up before it, or close off the water supply when a leak is detected.
One can clearly distinguish between critical situations, in which you want a fast
or a reliable response, versus non-critical ones, as well as the granularity of the
response (a person versus which specific person). By carefully selecting the crit-
ical outputs and the granularity of the outputs, we can craft a little local neural
network that offers fast response. This local neural network also acts as a filter
to limit the number of inputs sent to the big neural network in the cloud. For
example, only when a person is detected and one requires a more fine grained
classification of the person, the input is evaluated in the Cloud.



486 E. De Coninck et al.

The remainder of this paper is organized as follows. Section 2 presents related
work in scope of distributed neural networks. Section 3 explains the proposed
Big-Little architecture for neural networks in the scope of IoT. In Sect. 4 we
show some preliminary results that validate our idea using a frequently used
neural network evaluation dataset. Section 5 summarizes our conclusions and
presents plans for future work.

2 Related Work

In a highly distributed IoT environment one could try to speed up neural net-
work evaluation by distributing parts of the neural network among all the avail-
able devices. However, related work in distributing neural networks shows that
the communication overhead quickly becomes the limiting factor [7], hence this
approach is mainly used to speed up the training phase on a cluster of nodes
connected through a high speed network. Krizhevsky et al. [12] showed how a
larger neural network can be trained by spreading the net across two GPUs.
This way the communication overhead remains limited, as the GPUs are able
to read and write to each other’s memory directly. In [10], the authors show
that scaling up further to 8 GPUs can lead to a speed up factor of 6.16. Dean
et al. [9] presented the DistBelief framework for parallel distributed training of
deep neural networks. By adopting new training algorithms they can distribute
the training procedure on a large number of CPU nodes, for example achieving
a speed up of more than 12x using 81 machines.

As these methods all focus on the training phase and require high end server
infrastructure, these are not applicable for speeding up small neural networks in
an IoT use case. One approach to optimize distributed neural network execution
with parts distributed across embedded devices is simplifying multi-class clas-
sification problems to one-vs-all (OVA) or one-vs-one classifiers (OVO). These
methods are straightforward and often used to construct a multi-class classifier
using binary-class classification [16]. One multi-class classification is split into a
set of binary-class classifications for each class and later combine them to the
original multi-class classifier.

Another optimization approach in which one part is deployed on an embed-
ded device, and a second part is running in the Cloud, uses a cascade of neural
network layers as depicted in [14]. The presented solution exists in augmenting
the structure of the neural network to obtain intermediate evaluation output.
Then, the evaluation with the remaining neural network layers is pre-empted if
the quality of the intermediate output exceeds a given threshold. By deploying
only first layers of the net on an embedded device, calls to the Cloud can be
limited to the input samples that do not yet result in a good output after these
first layers. Our paper proposes a similar approach, but instead of training inter-
mediate layers that classify all outputs with a lower accuracy, we introduce a
smaller neural network that is trained to only a subset of the outputs.



The Big-Little Approach 487

3 Big-Little Neural Network Architecture

A typical feed-forward neural network is composed of an input layer, one or more
hidden layers and one output layer. The output layer has one output for each
classification class, resulting in a value between 0 and 1, depicting the probability
that the input can be classified as such. In order to process as much as possible
locally on embedded IoT devices, and limiting communication to the Cloud, we
designed a little neural network that can be processed with limited CPU power,
which classifies only a subset of the output classes. This results in a Big-Little
neural network architecture as depicted in Fig. 1.

Fig. 1. Architecture of Big-Little feed-forward neural network: In this example, the
little neural network only classifies a subset (2) of the N output classes, and can be
executed locally with limited CPU power. When the little neural network cannot clas-
sify the input sample, a big neural network running in the Cloud can be queried.

The hypothesis of this paper is that by limiting the number of output classes,
we can also limit the size and amount of hidden layers of the neural network,
while maintaining the desired classification accuracy. By crafting the little neural
network to classify high priority classes only, a local response is obtained very
fast in these critical cases, while retaining the availability of the complete classi-
fication set by relaying to the cloud, that executes the big neural network. The
application developer may decide to directly send the raw input data to the large
neural network in the cloud, or only send the input after evaluation by the little



488 E. De Coninck et al.

network. Directly sending it to the cloud allows for a better classification but
consumes more bandwidth, while waiting for completion of the little network
takes some time.

Because the big and little neural network only share the input layer, these
two networks can be trained independently from each other using state-of-the-art
training techniques in an offline training phase.

4 Evaluation

To train and execute our neural networks, we used Theano [3,4], a Python
module compatible with GPU/CPU and many computer architectures. In our
experiments we use multilayer perceptrons (MLP) with one or more hidden layers
to easily increase the number of calculations by increasing the number of neurons
in each hidden layer.

4.1 Neural Network Evaluation Time

To assess how the evaluation throughput of a neural network varies with the size
of the network, we created fully connected multilayer perceptron (MLP)s with
an increasing number of hidden layers. Each hidden layer introduces additional
weighted links and thus increase the number of calculations needed to evaluate
a single input sample. We then measured the wall clock time needed to evaluate
a randomly generated input sample on various types of hardware, as listed in
Table 1.

Table 1. Hardware specifications.

Name Architecture CPU RAM

Raspberry Pi 2 ARM Cortex-A7 (quad-core @ 900 MHz) 1GB

Intel Edison x86 Intel Atom (dual-core @ 500 MHz) 1GB

iLab.t server [5] x86 2x Intel Xeon E5-2650v2 (8-core @ 2.60 GHz) 48GB

Figure 2 shows how the execution time linearly scales with the number of
weights in the neural network. In Fig. 2, we also included experimental results on
server-grade hardware from our testbet iLab.t [5] (Table 1). Given a maximum
response time of 40 ms, on a Raspberry Pi 2 we can run neural networks of
sizes below 2 × 106 weights. The size of the large network in the cloud depends
on the link delay between the nodes. With a link delay of for example 15 ms,
the large neural network evaluated on our server hardware can spend at most
40ms− 2 ∗ 15ms = 10ms on neural network processing, which corresponds with
up to 6.5 × 106 weights.



The Big-Little Approach 489

Fig. 2. Evaluation time of a single input sample for fully connected neural networks of
different sizes. Extra cores do not improve performance.

4.2 Classification Accuracy vs. Network Size

In our second set of experiments, we want to measure the inevitable loss of
accuracy when evaluating a little one-vs-all neural network compared to a big
multi-class neural network. By increasing the number of weights in the hidden
layer of both networks we can evaluate the difference in reliability. To fairly
compare these networks we use the F1-score of one priority class:

F1-score =
2 ∗ true positives

2 ∗ true positives + false positives + false negatives

This F1-score is the harmonic mean of precision and recall and is independent
of the total number of samples. Using the error rate as measure of comparison
would yield misleading results because the one-vs-all classifier was trained with
an unbalanced set, containing fewer samples for the ‘one’ class than for the ‘all’
class. The F1-score of a multi-class neural network can be calculated for each
class, but here we only look at the priority class of the little network.

To validate our neural networks, the popular MNIST dataset [13] was used.
This dataset consists of a training, validation and test set of handwritten digits
with a total of 70000 examples evenly distributed over the classification classes.
Starting with the state of the art neural network of Ciresan et al. [6] as the
big network that is executed on the cloud, we have distilled a small network by
prioritizing some output classes and aggregating the others into one category,
thus limiting the number of output classes. For this latter situation, a neural
network structure was created that achieves the same accuracy for the prioritized
output classes with a much lower neural network size.

Figure 3 shows a comparison between a big and a little fully connected neural
network. A more detailed output is given in Tables 2 and 3. Neural networks with
more output layers need more weights to reach the same accuracy. Our one-vs-all
network outperforms the big neural network for a low number of neural network
connections and more or less reaches the same quality of larger networks.



490 E. De Coninck et al.

Fig. 3. F1-score of big and little fully connected neural networks for MNIST classifica-
tion. The graph shows the F1-scores for classifying a ‘5’ character on the big network
(ID 3 - Table 2) and the little network (ID 1 - Table 2).

Table 2. Execution time of big and little neural networks on the server from Table 1.
Each number in the architecture represents the number of neurons in that layer, starting
with an input layer of 28 ∗ 28 neurons for MNIST. The last layer represents a binary
or multi-class classifier layer.

ID Architecture (number of neurons in each layer) Weights Process time for

one sample [ms]

1 784, 1 000, 500, 2 1 250 502 0.98

2 784, 1 000, 500, 10 1 254 510 1.00

3 784, 2 500, 2 000, 1 500, 1 000, 500, 10 [6] 11 972 510 16.42

Table 3. F1-score comparison of a big (ID 3) and a little (ID 1) neural network for
two classification classes (1 and 8) of MNIST. Structure of these networks are shown in
Table 2. The test error is not applicable for little networks with a unbalanced validation
sample set.

ID Priority class Test error for best
validation [%]

Priority class [%]

Recall Specificity Precision F1-score

1 1 NA 98.94 99.92 99.38 99.16

8 NA 96.41 99.76 97.71 97.05

3 1 2.11 99.12 99.90 99.21 99.16

8 2.11 96.82 99.70 97.22 97.02

Deploying the little network (ID 1 from Table 2) with 1 250 502 weights on
a Raspberry Pi 2 roughly gives an execution time of 30 ms (from Fig. 2). This
little network trained for classifying the priority class ‘8’ has a F1-score of 97.05%
which is 0.03% better than the remote big neural network (ID 3). The overall



The Big-Little Approach 491

performance of this little network is better for this specific class. Other classes
yield similar results.

Forwarding the same sample input to the big network gives an execution
time of 16.42 ms (from Table 2). From the moment the response time is more
than 46.42 ms (sum of execution time of big and little neural network) we can
get a faster and equivalent response from the little neural network executed on
a Raspberry Pi 2. In most cases this will not make a big difference but in highly
critical situations a fast response makes all the difference.

5 Conclusion and Future Work

In this paper we investigated the potential of Big-Little neural network architec-
tures, to reduce response time of the overall network, maintaining a comparable
accuracy. The results show that prioritizing one class can lower the calculations
required to reach the same classification performance for that class. This can
benefit use cases where reliability and response time are preferred.

Important points for future work are to deduce little networks and their
weights from a pretrained big network and to test the same hypothesis for con-
volutional neural networks on Cifar [11] and/or ImageNet [17]. In the future we
will distribute neural networks on multiple IoT devices in an environment to
decrease the cloud usage and increase the independence of this environment.

Acknowledgements. Part of the work was supported by the iMinds IoT research
program. Steven Bohez is funded by Ph.D. grant of the Agency for Innovation by
Science and Technology in Flanders (IWT).

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Barker, S.K., Shenoy, P.: Empirical evaluation of latency-sensitive application per-
formance in the cloud. In: Proceedings of the First Annual ACM SIGMM Confer-
ence on Multimedia Systems, MMSys 2010, pp. 35–46. ACM, New York (2010)

3. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)

4. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy), vol. 4, p. 3, June 2010. Oral Presentation

5. Bouckaert, S., Becue, P., Vermeulen, B., Jooris, B., Moerman, I., Demeester, P.:
Federating wired and wireless test facilities through emulab and OMF: the iLab.t
use case. In: Proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities,
pp. 1–16. Department of Information technology, Ghent University (2012)



492 E. De Coninck et al.

6. Dan C.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural
nets excel on handwritten digit recognition. arXiv preprint arXiv:1003.0358 22(12)
(2010)

7. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with COTS HPC systems. In: Proceedings of the 30th International Conference on
Machine Learning, pp. 1337–1345 (2013)

8. Da Li, X., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans.
Ind. Inform. 10(4), 2233–2243 (2014)

9. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)

10. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014)

11. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Computer Science Department, University of Toronto (2009)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (1998)
14. Leroux, S., Bohez, S., Verbelen, T., Vankeirsbilck, B., Simoens, P., Dhoedt, B.:

Resource-constrained classification using a cascade of neural network layers. In:
International Joint Conference on Neural Networks (2015)

15. Parwekar, P.: From internet of things towards cloud of things. In: 2011 2nd Inter-
national Conference on Computer and Communication Technology (ICCCT), pp.
329–333, September 2011

16. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res.
5, 101–141 (2004)

17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015).
doi:10.1007/s11263-015-0816-y

18. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

http://arxiv.org/abs/1003.0358
http://arxiv.org/abs/1404.5997
http://dx.doi.org/10.1007/s11263-015-0816-y

	Distributed Neural Networks for Internet of Things: The Big-Little Approach
	1 Introduction
	2 Related Work
	3 Big-Little Neural Network Architecture
	4 Evaluation
	4.1 Neural Network Evaluation Time
	4.2 Classification Accuracy vs. Network Size

	5 Conclusion and Future Work
	References


