
Dynamic Monitoring Dashboards Through
Composition of Web and Visualization Services

Sofie Van Hoecke(B), Cynric Huys, Olivier Janssens, Ruben Verborgh,
and Rik Van de Walle

Data Science Lab, ELIS, Ghent University-iMinds, Ghent, Belgium
sofie.vanhoecke@ugent.be

http://datasciencelab.ugent.be

Abstract. In order to present and communicate the condition of mon-
itored environments to supervising experts, a dashboard is needed to
present the status of all sensors. The heterogeneity and vast amount of
sensors, as well as the difficulty of creating interesting sensor data combi-
nations, hinder the deployment of fixed structure dashboards as they are
unable to cope with the accordingly vast amount of required mappings.
Therefore, in this paper, the development of a dynamic dashboard is pre-
sented, able to visualize any particular and user defined data and sensor
composition. By implementing the heterogeneous sensors as semantically
annotated Web apis, a dynamic sensor composition and visualization is
enabled. The resulting condition monitoring dashboard provides a clear
overview of the system kpis in acceptable timing and provides helpful
tools to detect anomalies in system behaviour.

Keywords: Web apis · Semantic annotation · Monitoring environ-
ments · Dynamic composition and visualization · Dashboards

1 Introduction

Multi-sensor architectures, consisting of heterogeneous sensors, are becoming
increasingly popular, despite the many challenges they face in terms of data
heterogeneity and proprietary data representation standards and communication
protocols. The sensors communicate their results through different protocols
and represent their data in different formats, resulting in a huge heterogeneity
in terms of sensor data representation. Nevertheless, monitoring applications
expect a near real-time flow of up-to-date sensor data.

By adopting the Internet of Things vision and implementing the sensors as
web-connected devices, sensors have a uniform Web api [1], solving most of the
challenges listed above. By using RESTdesc to semantically describe the sensors,
advanced sensor compositions and mash-ups can be dynamically generated with
existing Semantic Web reasoners [1], enabling the detection of complex events
that previously would have remained undetected.

In order to visualize the condition of monitored environments to supervising
experts, a monitoring dashboard is needed to present the status of all sensors.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 465–474, 2016.

DOI: 10.1007/978-3-319-47075-7 50



466 S. Van Hoecke et al.

Both the heterogeneity and amount of sensors, as well as the difficulty of creat-
ing interesting sensor data combinations, hinder the deployment of fixed struc-
ture dashboards as they are unable to cope with the accordingly vast amount
of required mappings. Therefore, the development of a dynamic dashboard is
required, able to visualize any particular and user defined data composition.

This paper introduces a system architecture in which dynamic sensor com-
positions and dynamic visualizations of these compositions are supported. The
resulting visualization instantiation can be rendered in a widget on the dash-
board. Both composition and visualization processes are feasible by semantically
annotating the data and visualization services, and by providing these descrip-
tions together with additional logic to a semantic reasoner.

The platform for dynamic visualization of multi-sensor architectures is imple-
mented within an offshore wind farm use case where each of the wind turbines
has several sensors by which the current condition of the turbine can be observed.

The remainder of this paper is as follows. Section 2 provides an overview on
the current state-of-the-art of dynamic visualization techniques. Next, Sect. 3
describes the proposed platform architecture. In Sect. 4, an accompanying case
study is performed, i.e. the monitoring of a (virtual) offshore wind farm. After
presenting screenshots of the resulting dynamic dashboard, Sect. 5 evaluates the
proposed platform in terms of usability, reliability and general performance.
Finally, Sect. 6 formulates the major conclusions.

2 Related Work

Hoang et al. [3] propose a hypergraph-based Query-by-Example approach for
developing a dashboard that satisfies a user query according to the current
user requirements. Using this hypergraph, knowledge is mapped from hetero-
geneous and disparate data sources onto homogeneous ontological clusters. The
hypergraph-guided data linkage supports interactive exploration, contextualiza-
tion and aggregation of the data. Gitanjali et al. [2] adopt this Dashboard-by-
Example framework to develop a dynamic dashboard that allows to identify
semantically equivalent data in warehouses by modeling complex data as com-
ponents and permitting users to link this data to detect structural dependencies.

Leida et al. [4] annotate both the data and the visualization services using a
label and chart ontology using owl dl and swrl. The visualization process is
initialized by a sparql query and generic types (labels) are assigned to each of its
variables. A third ontology holds the instantiations of concepts that were defined
in the two former ontologies. The semantic Pellet reasoner [5] is responsible for
the actual creation of the visualizations.

In order to optimize and integrate global production processes, Mazumdar
et al. [6] adopt Semantic Web and information extraction mechanisms to col-
lect, structure and visualize document collections. The proposed methodology is
domain independent, abstract and based on ontologies. The actual visualization
process occurs in a similar way as the Dashboard-by-Example approach.



Dynamic Monitoring Dashboards 467

3 Dynamic Visualization of Multi-sensor Architectures

The vast amount and heterogeneity of data sources are two major obstacles for the
dynamic and efficient composition of this data. In monitoring environments the
data sources are sensors, having limited resources and storage. The automatic –
and meaningful – composing of sensor data is essential in order to detect more
complex events. It allows an early intervention and prevents permanent compo-
nent damage. Furthermore, by linking sensor data with relevant ad hoc mash-up
data, nontrivial associations can be exposed. From an analytical point of view,
it is also crucial to have access to the evolution and history of the sensor data,
enabling future failure detection and prevention. Sensors are typically not able to
keep track of their previous values, so external storage is required.

Sensor and data compositions need to be dynamically visualized, hereby
limiting the user input to selecting the preferred visualization method from a
system-generated list of meaningful options, taking into account the preferences
and characteristics of the current user profile. This results in a personalized
and dynamically built monitoring dashboard that allows to correctly analyse
and interpret the most critical functions of the monitored environment. Figure 1
presents the proposed system architecture, in which four major components can
be distinguished. The central broker component contains the core functional-
ity and connects (compositions of) data streams to an appropriate visualization
service, enabling meaningful real-time visualization instantiations to be created
and displayed on the dashboard widgets. The components are described below.

3.1 Data Services

Sensors can be implemented as Web apis to cope with the heterogeneous (and
possibly proprietary) data representation standards and communication pro-
tocols. By semantically annotating the obtained Web services and means of
inference, a higher level coupling can be achieved without any additional con-
figuration required. By considering each individual sensor as an abstract rest
resource, the system will be less application specific. A resource requesting com-
ponent needs to have access to the included semantic description, so (by means
of content negotiation) sensor data can be correctly interpreted.

3.2 Visualization Services

The main responsibility of the visualization services is to visualize the submit-
ted sensor data. Many satisfying and well performing visualization libraries exist,
and it suffices to enclose one of them in a Web service, making it accessible by
means of an api. This way, application specific functionality can be inserted.
Data is submitted using query string parameters. The actual mapping of sen-
sor data to these parameters is carried out in the central broker component,
provided that data and visualization services are consistently and compatibly
annotated. The visualization service interprets the submitted data using the
query parameters, and subsequently processes it. Source code that visualizes the



468 S. Van Hoecke et al.

Fig. 1. Platform for dynamic visualization of multi-sensor architectures

data is generated, as well as an update function to which real-time data can be
provided. This update function is called periodically, with a frequency specified
by the current user. The ad hoc connection between visualization services and
Web apis allows the creation of a personalized monitoring dashboard, exposing
formerly unknown relations between events and/or component behaviour.

3.3 Broker Component

Among the main tasks of the central broker component are (i) the discovery
and management of data and visualization services, (ii) the execution of the
three-phased reasoning process, (iii) the periodic retrieval and storage of up-
to-date sensor data, and (iv) the presentation and updating of visualization



Dynamic Monitoring Dashboards 469

instantiations on the dashboard. The broker component needs to have access
to the data and visualization service uris in order to involve the services in
the reasoning process. Hard-coding these locations is not flexible. Therefore, the
central component obtains the uris autonomously using a discovery mechanism.
This mechanism also actively monitors the statuses of discovered sensors by
the use of pinging. Alternatively, sensor discovery can also be done passively
by listening to a sensor’s heartbeat. A sudden disconnection may indicate a
component failure, so in this case all dashboard users are notified.

The semantic reasoner within the central broker component is responsible
for, given a sensor combination, (i) suggesting appropriate visualization services,
(ii) binding the sensor data with the selected visualization service (i.e. define a
mapping between the sensor data and the query parameters) and (iii) propos-
ing relevant sensors or sensor types that could be added to the composition.
The execution times of each of these reasoning phases needs to be reasonable.
The knowledge base (kb) contains the central logic that – along with seman-
tic descriptions of the data and visualization services – is indispensable for the
reasoning processes as it is the link between both service types.

The central component also maintains a historical database (hdb) that is
responsible for the storage of historical data, as sensors generally have no or lim-
ited storage. The Semantic Web data model is closely connected to the relational
database (rdb) model [7]. When the current visualization service is able to dis-
play historical data, the hdb has to be considered as a primary (pseudo) api. The
10min mean norm is a commonly applied measure for the frequency by which
up-to-date data is fetched. When the historical data is extended with recent
data that is collected with a higher frequency, the system allows the detection
of particular patterns in the evolution. Moreover, by providing the evolution of
the sensor values, future events can be predicted. The visualization service may
assist the user by e.g. actively comparing data ranges and marking similarities
or unexpected inconsistencies, hereby enabling anomaly detection.

Once the reasoner connects a given sensor (composition) with a selected
visualization service, the composer fills in the data in the created http get
request, along with historical data (if requested) and an identifier, by which
the resulting visualization instantiation can be recognized. The flow executor
executes this request, upon which the visualizer service generates the desired
source code. This subcomponent also deals with potential visualization errors.

Once the connection between data and visualization services is established, it
can be exploited unaltered in order to facilitate the stream of up-to-date sensor
data. Accordingly, no reasoning is required for the update process.

As sensors and visualization services are already implemented as Web apis
and a platform independent – divergent user profiles usually come with divergent
devices – application is desired, a web application implementation as dashboard
is preferred. The dashboard in its most elementary shape has a search bar,
allowing the user to browse the available entities and select the required sensors.
Requested visualization instantiations are allocated to widgets on the dashboard.



470 S. Van Hoecke et al.

4 Case Study: An Offshore Wind Farm

The monitoring of offshore wind farms is a complex task. Each of the turbines
has multiple sensors by which the condition of the turbine can be observed.
In order to correctly and promptly detect (partial) failures, the communicated
data within this monitoring environment has to be reliable (i.e. both correct
and timely). The main focus of this proof of concept case study is on composing
meaningful sensor compositions, connecting them with a suited visualization
service and identifying inconsistencies by exploiting the knowledge provided in
the kb and acquired in the hdb.

All components are implemented using the Ruby on Rails (ror) mvc frame-
work. A ror application offers a full web application stack, and follows a restful,
resource-oriented approach. A proper web server is embedded, so apart from a
working Ruby installation, no extra software is required. ror provides a data-
base by default and encourages the use of web standards (such as json) for data
transfer and html, css and JavaScript for user interfacing.

4.1 Data Services

Because of the sensitivity of data from existing wind farms, a virtual offshore
wind farm with 15 turbines (each turbine containing 9 sensors) is simulated.
Three major sensor categories are created, each but one producing fictitious
sensor values. In order to truthfully simulate the wind farm, the values are
restricted and depend on the values of related sensors.

By semantically annotating the data these sensors produce, a machine is
able to interpret it, hereby enabling spontaneous connections on a higher level,
without requiring any additional configuration. json-ld semantically annotates
the sensor data and offers mappings from json to the rdf model using the
context concept, linking json object properties with ontology concepts [8].

4.2 Visualization Services

All visualization services employ the enclosed HighCharts js library to visualize
the submitted data. When required, additional parameters (restrictions) can
be included to mark e.g. extreme values. The proof of concept contains eight
different visualization services.

4.3 Broker Component

The reasoning phases are the most complex subtasks of the central broker compo-
nent. Rather than a traditional service description, restdesc is used to describe
the service functionality, enabling automated users and machines to use the ser-
vice. restdesc is designed for compactness and elegance with modern Semantic
Web technologies and tools, so existing vocabularies can be reused.

The kb contains all required logics (described in either restdesc or n3)
to perform a successful sensor composition and visualization. In order to avoid



Dynamic Monitoring Dashboards 471

duplicated source code and centralize knowledge, a hierarchy of data and visual-
ization services is constructed. Using this kb and the annotated sensor data, the
semantic eye reasoner is able to perform the three-phased reasoning process.

As the hdb can expand very quickly, in future work, it can be advantageous
to construct multiple databases, per sensor type, to reduce the search space
reasonably without causing much overhead. The active monitoring of the statuses
of the sensors is integrated in the periodic (10min mean) data updating process –
the sensors are approached by the latter process anyway. This way, the sensors
are implicitly pinged when requesting their current value. Appropriate actions
are taken according to the delivered http status codes. The possible applications
of the hdb are diverse and broader than covered. The hdb is the tool of choice
when performing trend analysis and trend (or value) prediction.

The composer and flow executor interact with the visualization services and
bundle, execute and process the composed requests. The resulting visualization
instantiation is visualized on a dashboard widget.

As stated above, no reasoning is required when updating existing visualiza-
tion instantiations. To update these instantiations, new data objects in which
newly retrieved values are encapsulated, can be passed to their respective update
function. The update frequency can be set for each widget individually. Users
are often interested in some specific aspects of the monitored wind farm, requir-
ing several minutes to build the corresponding dashboard. To solve this, the
system provides profiles – predefined widget clusters that swiftly make specific
functionality accessible – that can be instantiated in several seconds.

The connecting logic in the kb is located at the central broker component.
In order to achieve a completely loosely coupled system, data and visualization
services may only depend on their individual descriptions, which can also be
stored in the kb. The location of the kb and whether or not it should be distrib-
uted is worth a discussion, and has to aim for maximized usability, maximized
decoupling and knowledge centralization.

4.4 Resulting Dynamic Dashboard

Figure 2 presents a possible dashboard configuration for monitoring offshore wind
farms. Widgets can be easily added and/or removed. Every widget holds the
descriptions of the containing sensors and has a menu to adjust the visualisation
and according options. Thanks to the semantic descriptions of all sensors and
visualization services, related sensor data can also be easily selected from these
widgets and added to the visualization.

5 Evaluation

The limited adaptability and static nature of traditional dashboards, as well as
the automated detection of complex events and creation of advanced composi-
tions, are the driving forces behind the design of the proposed platform. There



472 S. Van Hoecke et al.

Fig. 2. Dynamic dashboard for monitoring offshore wind farms

Fig. 3. Sensor data retrieval times

is a need for dashboards that satisfy current user needs, in a user-friendly way
and with minimal configuration required.

New widgets are added in a straightforward way and the profile concept offers
quick and easy access to vital system aspects. The interactive HighCharts library
offers neat, accurate, well performing and user-friendly data charts.

Data needs to be fetched and visualized in soft real-time, so users can get no
false sense of security. The reliable http protocol transfers sensor data to the
central component. Note that individual sensor requests are independent, and
therefore are able to be executed in parallel. The prototype however executes



Dynamic Monitoring Dashboards 473

Table 1. Execution times of the three-phased reasoning process (ms)

Reasoning Number of visualization Number of sensors involved

services involved 1 5 10 20 30 40 50 75 100 125

Phase 1 1 1 2 5 8 14 20 26 49 70 106

2 2 3 6 14 17 22 32 54 81 114

3 3 5 8 14 22 33 40 74 105 147

4 3 4 8 17 24 34 43 69 105 150

5 3 6 11 18 30 36 46 81 116 161

6 3 6 11 19 27 41 54 88 132 186

7 3 6 12 19 29 43 53 91 128 166

8 3 6 9 17 28 41 60 86 126 170

Phase 2 1 26 962 3.719 13.263 27.269

Phase 3 1 2 2 6 10 14 12 18 24 30

the update requests sequentially as the overhead would be too large considering
the initial intention of the prototype (i.e. proving the concept). In this sequen-
tial case, retrieval times grow linearly with the number of sensors, but remain
acceptable even for a larger number of sensors (see Fig. 3). As long as the total
retrieval time does not exceed the user defined update interval, the user will not
experience noticeable delays.

The three-phased reasoning process is the most time consuming. There is an
acceptable initialization and networking overhead (in which the required seman-
tic descriptions are collected), but the actual reasoning process, of which the
execution times are presented in Table 1, is the most time-intensive. Although
the reasoning procedures in the first and third phase generally have acceptable
execution times, the second phase (in which the sensor data is mapped onto
query parameters) is much more time consuming. Because of the (combinator-
ial) increasing number of possible mappings in this phase, the eye reasoner may
have a hard time connecting a visualizer service with multiple sensors.

Execution times could be reduced by providing the reasoner with additional
directives and less generic linking logic. However, this undermines the dynamic
nature of the system, which of course is its absolute strength. The creation times
of average widget configurations are nevertheless acceptable, and creating new
widgets only happens occasionally.

6 Conclusion

Dashboards present and communicate the condition of monitored environments
to supervising experts. Contrary to current static solutions for monitoring dash-
boards, the proposed platform enables dynamic data visualization.

By adopting the Internet of Things vision and implementing sensors as Web
connected devices, semantically annotated using restdesc, the presented plat-
form allows to precisely visualize the data produced by sensors in multi-sensor
environments by dynamically generating meaningful service compositions. Such



474 S. Van Hoecke et al.

a dynamic dashboard application, combined with advanced failure detection
mechanisms – the hdb and reasoning component are excellent tools for this –
proves to be a very powerful monitoring tool for complex, hardly accessible
and/or critical environments. It enables its users to correctly monitor the con-
dition of the environment and moreover, as a result of the meaningful sensor
composition process, to detect complex events that used to remain undetected.

The platform only consists of existing technologies and Semantic Web con-
cepts. Both the composition and visualization processes are fully dynamic,
application independent and complete within acceptable time. Up-to-date data
values – crucial for a monitoring application – are delivered in soft real-time.

Acknowledgement. This work was partly funded by the IWT VIS O&M Excellence
project, and performed in the framework of Offshore Wind Infrastructure Application
Lab.

References

1. Van Hoecke, S., Verborgh, R., Van Deursen, D., Van de Walle, R.: SAMuS: service-
oriented architecture for multisensor surveillance in smart homes. Sci. World J.
2014, 9 p. (2014). Article ID 150696, doi:10.1155/2014/150696

2. Gitanjali, J., Kuriakose, M., Kuruba, R.: Ontology and hyper graph based dash-
boards in data warehousing systems. Asian J. Inf. Technol. 13(8), 412–415 (2014)

3. Duong, T.A.H., Thanh, B.N., Tjoa, A.M.: Dashboard by-example: a hypergraph-
based approach to on-demand data warehousing systems. In: Proceedings of Inter-
national Conference on Systems, Man, and Cybernetics (2012)

4. Leida, M., Du, X., Taylor, P., Majeed, B.: Toward automatic generation of SPARQL
result set visualizations: a use case in service monitoring. In: Proceedings of the
International Conference on e-Business (ICE-B), July 2011

5. Parsia, B., Sirin, E.: Pellet: an OWL DL reasoner. In: Third International Semantic
Web Conference-Poster, vol. 18 (2004)

6. Mazumdar, S., Varga, A., Lanfranchi, V., Petrelli, D., Ciravegna, F.: A knowledge
dashboard for manufacturing industries. In: Garćıa-Castro, R., Fensel, D., Antoniou,
G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 112–124. Springer, Heidelberg (2012)

7. Berners-Lee, T.: Web Design Issues; What the Semantic Web can Represent. http://
www.w3.org/DesignIssues/RDFnot.html

8. Lanthaler, M., Gütl, C.: On using JSON-LD to create evolvable restful services. In:
Proceedings of the Third International Workshop on RESTful Design, pp. 25–32
(2012)

http://dx.doi.org/10.1155/2014/150696
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html

	Dynamic Monitoring Dashboards Through Composition of Web and Visualization Services
	1 Introduction
	2 Related Work
	3 Dynamic Visualization of Multi-sensor Architectures
	3.1 Data Services
	3.2 Visualization Services
	3.3 Broker Component

	4 Case Study: An Offshore Wind Farm
	4.1 Data Services
	4.2 Visualization Services
	4.3 Broker Component
	4.4 Resulting Dynamic Dashboard

	5 Evaluation
	6 Conclusion
	References


