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Abstract. In order to support navigation, gesture detection, and aug-
mented reality, modern smartphones contain inertial measurement units
(IMU) consisting of accelerometers and gyroscopes. Although the accu-
racy of these sensors directly affects the soundness of mobile applications,
no standardized tests exist to verify the correctness of the retrieved sen-
sor data. For this purpose, we present a novel benchmark, which utilizes
the camera of the phone as a reference to estimate the quality of its sen-
sor data fusion. Our experiments do not require special equipment and
reveal significant discrepancies between different phone models.

1 Introduction

A large number of mobile and ubiquitous applications for smartphones rely
on a sound and stable orientation estimation. For example, a step counter [1]
can improve the accuracy of indoor localization when the GPS signal becomes
unavailable [2]. However, both the occurrence of a step and its direction must
be measured precisely to track the relative movement of the user. Similarly, aug-
mented reality applications [3] also require the exact orientation of the device to
display context-dependent information on the screen, which should match the
real environment as close as possible. For instance, the navigation application
presented by [4] shows the direction to the destination as a perspective arrow
within the camera image and counts the remaining number of steps. In addi-
tion, the detection of gestures for user authentication strongly depends on the
accuracy of the IMU [5].

Inertial sensors are often built as micro-electro-mechanical systems (MEMS)
to reduce size, power consumption, and production costs. According to [6], possi-
ble error sources are a constant bias, thermo-mechanical noise, bias instabilities
due to flicker noise, temperature effects, and calibrations errors. Due to the inte-
gration, even small deviations can lead to significant differences. For example, a
constant bias in the gyro causes a continuously growing angle error. As a result,
the soundness of the sensor data at the application-level, is directly affected by
the accuracy of the IMU.

As an introductory example for the relevance of an IMU benchmark, we show
the results of a pedestrian tracking application running on three different but
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(a) Phone 1 (b) Phone 4 (c) Phone 5

Fig. 1. Rectangular path measured on different phones.

anonymized phones (Fig. 1). Only Phone 1 has correctly captured the rectan-
gular shape, while the path of Phone 5 is slightly deformed. On Phone 4, the
second half of the path is flawed due to the integration of erroneous directions.

Consequently, the development of sensor-based applications requires exten-
sive testing to deal with the large variations between different IMUs. As a pos-
sible solution, we present a benchmark for Android phones (Fig. 2), which mea-
sures both the static and dynamic accuracy of the sensor data fusion through
the usage of the built-in camera and a specially developed reference pattern. For
this purpose, the application simultaneously records sensor data and captures a
video stream, which is then used to reconstruct the 3D orientation of the phone.
Since the camera represents a potential error source, the latency between camera
and sensor is compensated through a calibration procedure.

In particular, the innovations of our benchmark can be summarized as follows:

1. The camera of the smartphone is used to estimate a reference orientation. If
the rotation vectors obtained from sensor and camera match, we can assume
the correctness of the IMU.

2. Our benchmark computes an error metric, which permits the quantitative
comparison of multiple test runs and different inertial sensors.

3. The test can be performed without additional equipment like an external
camera system and requires only a sheet of paper containing the pattern.

Fig. 2. Data flow model of our sensor benchmark.
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The rest of this paper is organized as follows: In Sect. 2, we present related
approaches for the evaluation of inertial sensors and techniques for optical track-
ing. The concept of our benchmark is specified in Sect. 3, Sect. 4 contains exper-
imental results, and Sect. 5 is reserved for conclusion.

2 Related Work

Several methods for the calibration of IMUs through image processing already
exist. For instance, the work presented in [7] utilizes an optical tracking system
(Optotrack) consisting of three IR cameras and three LEDs, which are attached
to the IMU in order to determine its absolute orientation. In addition, the relative
orientation between a camera and an IMU can be estimated by capturing several
images of a chessboard and correlating the vertical lines with the gravity vector
[8]. Further, also the mirrored image of the camera is suitable for self-calibration
of the sensor [9]. Our approach takes the opposite direction and assumes a fixed
orientation between camera and IMU to evaluate its accuracy.

Determining the orientation of the device from a single camera image requires
a set of feature points in screen space and their corresponding coordinates in
world space. For this purpose, iterative algorithms like [10] provide a robust
solution in case of inaccurate input data. Although four coplanar points are
sufficient to compute the relative camera orientation [11], a larger number of
features increase both the accuracy and the robustness of the result [12]. Our
benchmark utilizes the algorithm presented by [13], which accepts a variable
number of corresponding points for calculating the camera orientation and has
been implemented in the OpenCV library [14].

The detection of feature points usually depends on distinct markers, which
encode their world position in form of different shapes [15]. Alternatively, each
marker can be uniquely identified by patterns of black and white blocks [16]. In
comparison to a more regular chessboard [17], this technique permits extensive
rotations of the camera because only a sub-set of the markers must be visible
in each frame. However, for use cases like the video-based augmented reality
conferencing system [18], six markers are adequate to locate a virtual shared
whiteboard. Also, the VideoMouse supports six degrees of freedom [19] and
contains a camera to record a regular pattern of circular markers. Due to the
restricted viewing angle of the camera, only a small and quickly changing section
of the grid can be observed, so that additional codes within the markers are
necessary for global localization.

Since we are mainly interested in the relative rotation of the camera, we have
chosen a regular pattern of uniform squares. It resembles both [13,19] but can
be detected in a similar way to QR codes [20]. While one rectangle offers four
feature points and is therefore sufficient to estimate the camera rotation, each
additional marker further increases the accuracy.
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3 Benchmark

The test procedure (Fig. 2) consists of an image processing step, which deter-
mines the relative rotation of the phone, the recording of sensor data, and the
final evaluation. In particular, the reconstruction of the rotation and the analysis
of the results represent the main contributions of this paper, which are discussed
in the following sections.

3.1 Overview

In order to compute the rotation of the phone from a camera frame, a set of cor-
responding feature points must be found in the image. For this purpose, we have
designed a reference pattern (Fig. 3a), according to the following requirements:

– The benchmark is performed in office environments under different lighting
conditions and backgrounds.

– The benchmark runs on a mobile phone with memory restrictions and limited
computational power.

– Since the phone is rotated during the test, a small part of the pattern must
be sufficient to compute its orientation.

Our pattern contains a regular grid of uniforms squares, which are enclosed
by a thick border. All elements are either black or white to reduce memory
usage as well as the complexity of image processing. As a consequence, the
contrast is increased so that the quality of the camera becomes less important.
In addition, the thick border helps to distinguish the squares of the pattern from
the background. Since the rotation of a single square is ambiguous for steps of
90◦, we include an internal marker to determine its actual rotation. Further, the
edge length of each square is three times larger than the width of the border
and the padding, which is used for identification. As a result, the pattern can
be printed in any size and can contain an arbitrary number of squares as long
as its relative proportions remain constant.

Fig. 3. Reference pattern developed for the purpose of the tracking; it is used for
measuring the orientation of the camera. (Color figure online)
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The image processing algorithm first looks for the pattern and collects screen
space coordinates of each square. Although the four corners of a square are
sufficient to compute the rotation of the camera [21], a larger number of squares
significantly increases the accuracy. Due to the regularity of the pattern, already
detected squares are used as hints to guide the further search. In a second step,
the relation between squares is examined to assign world space coordinates,
which are then used for 3D reconstruction. In the next sections, these two steps
are described in more detail.

3.2 Detecting Possible Squares

The goal of this first step is to compute a list of possible squares from the 8-bit
greyscale image. We start by applying a binary threshold for simplification, so
that the resulting pixels are either set to 0 or 255. Experiments have shown
that a threshold of 128 is sufficient to highlight the pattern. Due to the white
balancing in the camera of modern phones, an adaptive filtering is not necessary.

The next step utilizes the unique proportion between squares and spacing
to separate the pattern from the background. For this purpose, we trace a set
of random lines through the image and look for alternating black and white
segments. According to the design of the pattern (Fig. 3b), the characteristic
ratio between these segments corresponds to ≈ 3 : 1 if the camera is aligned in
parallel to the raster. However, in order to improve the detected of squares at
steep angles, the ratio of ≈ 3 : 1 is automatically adapted by our algorithm.

If a run of at least four consecutive segments has been found, the current
position might be located at the border of square region (red). Hence, the center
of the square can be reached by stepping back half of the distance (blue).

Since only lines, which are more or less aligned to the pattern, satisfy these
conditions, we can speed up the search by creating more appropriate lines
(green). After a square has been found, additional search lines are constructed
through the midpoints of opposing sides. Consequently, they are automatically
aligned to the grid and intersect most likely several other squares. As a result, the
entire pattern can be retrieved from a single square in two iterations. Finally,
each region is flood-filled with a different color and passed to the next stage,
which extracts the contour and screen space coordinates of the square.

3.3 Extracting Valid Squares

Currently, each possible square corresponds to a set of pixels with a specific
color. In order to derive its screen space coordinates, we have to ensure that
the region is actually a valid square, discover its four corners and align its sides
according to the internal marker (Fig. 4). For this purpose, the contour of the
region is extracted (Fig. 4a) and iteratively simplified (Fig. 4b) until it consists
of exactly four points (Fig. 4c). Invalid regions either vanish during this process
or converge to a polygon with a different number of corners.

To compensate for inaccuracies during the simplification step, the corners of
the remaining squares are adapted to match the color gradient in the original
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Fig. 4. Extraction and alignment of a square.

image (cornerSubPix ). Since the 3D reconstruction requires consistent world
space coordinates, the squares must be also aligned, so that the internal marker is
located at the first point. Let p1, p2, p3, p4 ∈ R

2 be the screen space coordinates of
the square. Based on the construction of the pattern, the four possible locations
of the marker m1,m2,m3,m4 ∈ R

2 are given by the weighted sums:

m1 := 9
16 · p1 + 3

16 · p2 + 1
16 · p3 + 3

16 · p4

m2 := 3
16 · p1 + 9

16 · p2 + 3
16 · p3 + 1

16 · p4

m3 := 1
16 · p1 + 3

16 · p2 + 9
16 · p3 + 3

16 · p4

m4 := 3
16 · p1 + 1

16 · p2 + 3
16 · p3 + 9

16 · p4

Since the square is printed in black and the marker is printed in white, it can
be identified by choosing the brightest of all four possible locations. Finally, the
points of the square are rotated until p1 corresponds to the corner of the marker.

3.4 Collecting Squares

While the four screen space coordinates of each square are known at this point,
we also require corresponding world space coordinates to compute the orientation
of the camera. Actually, the square can be placed anywhere on a XY-plane in
world space because relative distances are sufficient to determine the current
rotation vector. Hence, the four coordinates w1, w2, w3, w4 ∈ R

3 of a single square
are defined as follows:

w1 := (0, 0, 0) w2 :=
(
3
4 , 0, 0

)
w3 :=

(
3
4 , 3

4 , 0
)

w4 :=
(
0, 3

4 , 0
)

The size of 3
4 is specified according to the ratio of (3 : 1) between squares and

spacing in the pattern, which becomes especially important when using multiple
squares. In this case, their relation must be considered as well to construct a
global coordinate system. In particular, two squares are either neighbours in
one of the four directions (left, right, up, down) or not directly connected. Each
direction is associated with an offset in world space, so that one of the two
squares can be placed at the origin, while the other is shifted accordingly.

By iteratively assigning coordinates of adjacent squares, we can successively
construct a world space coordinate system as shown in Fig. 5. In this example,
some of the squares are missing (dark) and the initial square (grey) is placed at
the origin (0, 0). The arrows (green) illustrate the incremental expansion, so that
the square at the right of (0, 0) gets an offset of (1, 0). In order to determine the
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Fig. 5. Building the coordinate system.
(Color figure online)

Fig. 6. Pinhole camera model.

relation of two arbitrary squares, the distances between the four pairs of opposing
edges (red) are calculated. Due to the layout of the pattern, two edges can be
considered as adjacent if their average distance is shorter than their length. At
the end of this iterative process, all squares either belong to the connected sub-
set containing the origin or correspond to separated isles, which are removed
from the set. Hence, in case of n valid squares, the result contains 4n pairs of
screen space and world space coordinates.

3.5 Camera Model

Our camera model describes the relation between a point in homogeneous coor-
dinates (x, y, z) and its projection (x′, y′, z′) on the screen using the equation:

(
x′
y′

z′

)
:= I · R ·

(
x
y
z

)
(1)

In particular, the rotation matrix R is the unknown variable to be determined,
while the intrinsic matrix I can be derived from the camera model (Fig. 6). We
utilize a pinhole camera, which is characterized by the focal length f and the
field-of-view α. According to the intercept theorem, the relation between the
width x of an object and its projection x′ is given by:

x
x′ = z

f ⇔ x′ = x·f
z

This relation can be also expressed in homogeneous coordinates using a projec-
tion matrix P :

(
x′
y′

z′

)
:= P ·

(
x
y
z

)
width P :=

( f 0 0
0 f 0
0 0 1

)

The coordinates are scaled according to the size w × h (matrix S) of the image
sensor and its resolution u × v:

I := S · P =
(

u
w 0 u

2
0 v

h
v
2

0 0 1

)( f 0 0
0 f 0
0 0 1

)
=

( f·u
w 0 u

2

0 f·v
h

v
2

0 0 1

)
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The width w of the image sensor is derived via trigonometry,

tan
(

α
2

)
= w

2·f ⇔ w = 2 · f · tan
(

α
2

)

while the height h can be computed from the aspect ratio:

h = w · v
u

Therefore, the intrinsic matrix I of the camera is given by:

I :=
(

λ 0 u
2

0 λ v
2

0 0 1

)
with λ := f ·u

w

Beside the rotation matrix R, all variables of Eq. (1) are known. As a result, we
can insert the 4n pairs of world space and screen space coordinates to compute
an approximation of R via [11–13] or the OpenCV method solvePnP [14].

3.6 Evaluation

Since the reference pattern (Fig. 3) can be placed anywhere for testing, it is
impossible to determine the absolute orientation of the camera from the image.
As a consequence, our benchmark compares relative rotations of camera and
sensor with regard to a reference orientation, which is captured at the beginning
of a test run.

Optimally, the relative rotation angles match at all times but since camera
and sensor are usually implemented as separate hardware components, their time
stamps are not synchronized. We have examined a latency of approximately one
frame between camera and inertial sensor. Since the sensor usually produces a
significant higher number of samples, both curves must be adjusted and cross-
correlated to minimize this error.

For a test run of length l, the error e(t) at time t is defined as the shorted
rotation angle in degrees between camera and sensor. As a result, we can define
an error score E as the weighted mean error over the time t of the test.

E :=
1
t

∫ t

0

e(x)dx (2)

The unit of E is degrees and smaller values are better.

4 Results

Based on the concept of Sect. 3, we have developed a benchmarking application
for Android phones, which records the video sequence of a reference gesture
(Fig. 7) in order to compute the dynamic accuracy of the IMU. The error score
is calculated in a post-processing step and defined by the integral of the mean
deviation between camera and sensor angles (2). The application also shows a
detailed presentation in form of graphs and statistics for every test run.
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Fig. 7. Gestures performed for the rotation test.

Table 1. Results of the rotation test and the pedestrian tracker

Phone Rotation vector Game rotation vector Pedestrian tracker

x σ x σ Score s ∈ [−1, 1]

Phone 1 1.48 0.20 1.33 0.23 0.208

Phone 2 2.35 0.29 1.37 0.13 −0.278

Phone 3 4.67 3.89 1.75 0.61 0.083

Phone 4 6.79 3.58 7.89 0.96 −0.333

Phone 5 9.62 11.96 n/a n/a −0.125

Our benchmark has been evaluated using the LG G3, the Samsung S5, the
LG Nexus 5, the Moto G2, and the HTC One, which are anonymized in a dif-
ferent order as Phone 1 to Phone 5. During a test run, the phone is tilted
≈ 40◦ forwards, backwards, and to both sides, while the camera is pointed at
the pattern (Fig. 7). As a possible error source, blurring artefacts might prevent
the correct detection of the pattern, so that the speed of the gesture must be
adapted according to the quality and exposure time of the camera. Therefore,
smaller resolutions like 800 × 480 pixels usually provide more accurate results
than HD recordings due to higher frame rates.

The rotation gesture is performed manually but repeated ten times per phone
to improve the significance of the benchmark. Table 1 lists the mean error (x) as
well as the standard deviation (σ). We are using both the default rotation vector
and the game rotation vector, which are acquired using the SensorManager API
of Android. While the default rotation vector is automatically recalibrated by a
compass, the game rotation vector is better suited for fast movements and cannot
be disturbed by magnetic influences. The results show significant differences
between the evaluated phones. In particular, the average error is less than 3◦ for
Phone 1 and Phone 2 but reaches almost 10◦ for Phone 5. For the three best
phones, the game rotation vector (not available on Phone 5) offers even better
results with an error score of less than 2◦.

Our benchmark assumes that the reconstructed rotation vector from the cam-
era is more accurate than the rotation obtained directly from the IMU. Since
both rotations are computed using entirely different algorithms, a correlation
between camera and sensor is a strong indicator for the correctness of the mea-
surement. The reproducibility of our test is further emphasized by the fact that
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accurate results coincide with a small standard deviation of less than 1◦. How-
ever, in case of discrepancies like Phone 5, it remains ambiguous whether the
camera, the IMU, or both provide erroneous data.

For comparison, we have also evaluated the pedestrian tracker application
using various paths, which results in a score s ∈ [−1, 1] for each phone (Table 1).
Contrary to the rotation test, larger values are better in this case and we can
detect a coincidence between precise results. For instance, Phone 1 produces
sound results in both tests, while Phone 4 and Phone 5 are much less reliable
with x > 6 and σ > 3.

5 Conclusion

This paper describes the concept of a mobile and camera-based benchmarking
method for inertial sensors and sensor fusion on smartphones. As a result, we
can identify significant discrepancies between the accuracy of different IMUs,
which also affect their usability at the application-level. In contrast to existing
methods, our benchmark does not require an expensive test environment but can
be performed using a recent Android phone and the reference pattern printed
on a single sheet of paper. Future work includes improving the reproducibility
of the test, supporting a wider range of movements, and detecting external error
sources like magnetic fields.
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