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Abstract. Today sensors and wearable technologies are gaining popularity,
with people increasingly surrounded by “smart” objects. Machine learning is
used with great success in wearable devices and sensors in several real-world
applications. In this paper we address the challenges of context recognition on
low energy and self-sustainable wearable devices. We present an energy efficient
multi-sensor context recognition system based on decision tree to classify 3
different indoor or outdoor contexts. An ultra-low power smart watch provided
with a micro-power camera, microphone, accelerometer, and temperature sen-
sors has been used to real field tests. Experimental results demonstrate both high
mean accuracy of 81.5 % (up to 89 % peak) and low energy consumption (only
2.2 mJ for single classification) of the solution, and the possibility to achieve a
self-sustainable system in combination with body worn energy harvesters.

Keywords: Ultra-low power � Smart watch � Context recognition � Machine
learning � Sensor fusion � Energy neutral � Feature selection

1 Introduction

Today sensors and embedded technologies are gaining popularity, with people
increasingly surrounded by embedded sensing devices. Smart, connected products are
made possible by vast improvements in processing power and device miniaturization,
and by the availability of ubiquitous wireless connectivity. Driven by Moore’s Law
these devices have become smaller and smaller and new applications are now possible.
A fast growing class of such devices is “smart wearables”, where electronics and
sensors are tightly coupled with the human body [1]. The largest hi-tech companies,
such as Google, Samsung, and Apple, have either already launched wearable consumer
products, or are in the process of creating prototypes in an effort to fuel the next wave
of exponential growth in the consumer market. Wearable technology is also very
important for healthcare where electronic smart devices can continuously monitor
patient health data and enable doctors to identify possible diseases earlier and to
provide optimal treatment [2, 3].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
B. Mandler et al. (Eds.): IoT 360° 2015, Part II, LNICST 170, pp. 331–343, 2016.
DOI: 10.1007/978-3-319-47075-7_38



The clear trend is that wearables are becoming ubiquitous in our lives replacing
classically non-electric items like shoes or clothes. Soon a trillion sensor-rich connected
devices are going to produce a mind-boggling quantity of data and potentially useful
information [4]. However, data alone do not provide value unless we can turn them into
actionable, contextualized information. Big data and data visualization techniques
allow us to gain new insights through batch-processing and off-line analysis. Real-time
sensor data analysis and decision-making is often done manually, but to make it
scalable, it should preferably be automated.

The major challenge for wearable systems is to be able to understand the world in a
similar way humans do [5]. Perceptive low-power sensor devices should be able to
interpret the context around their users and allow context-aware multi-agent interaction.
In fact, human activity and context recognition is the key technology for achieving
pervasive computing applications from home automation to healthcare, from sport and
fitness to augmented reality. Machine learning technologies are used with great success
in many application areas, solving real-world problems in entertainment systems,
robotics, health care, and surveillance [6–10] and are becoming essential also to
wearable applications [11, 12]. For example, helping athletes by providing motion
sequence analysis, or detecting abnormal situations for elderly or patient care.

More and more researchers are tackling action and classification problems with
algorithms which deal with feature extractors and classifiers with lots of parameters that
are optimized using the unprecedented wealth of data that has recently become
available. These techniques are achieving record-breaking results, and have started
outperforming humans on very challenging problems and datasets, and surpass more
mature ad-hoc approaches trying to model the specific problem at hand [7–17].
However, machine learning approaches are still a challenge for low power devices such
as wearables, because, in their current embodiments, they still require massive amounts
of computational power. Current wearable sensor technologies do not analyze data
on-board and usually leverage smart-phones for computationally intensive activity
(such as sitting, standing, walking, and running) monitoring. As opposed to conven-
tional monitoring systems that send the sensor data to a datacenter or mobile phones to
be stored and processed, embedded smart systems process the data partially, or fully,
in situ. This can significantly reduce the amount of data to be transmitted and the
required human intervention – the sources of the two most expensive aspects of dis-
tributed sensing.

A typical wearable device consists of a battery-powered computing unit, a wireless
communication interface, sensors, and power supply packaged in a small and unob-
trusive form factor suitable to be attached to the human body [12]. Thus, low power
design and software optimization is even more challenging in wearable systems due to
the limited energy availability of the battery and computational resources. In fact low
power design alone is not enough to make these devices with battery lifetimes of
months or years, instead of just mobile, with daily battery recharges, similar to today’s
smart phones. Power consumption reduction with power managed resources and low
power software improves and extends the lifetime of battery-operated devices. Another
method for re-charging the available energy stored in batteries or super capacitors is by
using energy harvesters that collect energy from the environment is the most adopted
technology. Researchers have been very active in this field and energy harvesting is
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today a well-understood technique. However most of the presented approaches usually
imply an outdoor setting, using solar panels, wind turbines or high-frequency vibration
as the energy source. Solar energy in particular has been demonstrated as optimal
solution for achieving self-sustainability in many outdoor applications when the entire
device is carefully dimensioned and designed. In the general case, where the device
cannot be assumed to be continuously operating in an outdoor environment, energy
harvesting still remains challenging. Energy harvesting for mobile/wearable devices is
even more challenging due to the more stringent size/weight constraints, which limits
the size of harvesters and energy storage devices [15].

This work focuses on low power smartwatch devices and on context recognition in
our daily lives. The main contributions of this work are as follows: design and opti-
mization of an energy efficient smart watch to perform context recognition with low
power heterogeneous sensors; using an ultra-low power camera and microphone
coupled with inertial and temperature sensors to improve the classification accuracy;
investigation of a low power on board feature extraction and classification with a low
power and limited computation resources microcontroller (MSP430 from Texas
Instruments); evaluation of the energy efficiency and self-sustainability of the context
recognition on a smart watch achieving an unobtrusive monitoring system. The key
feature of the system is its low power algorithm as well as the heterogeneous system
implemented allowing monitoring in diverse situations. The main goal is to explore the
feasibility of low power multi-sensors classification algorithms with data fusion, and
the benefits of a combination of hardware and software co-design to achieve a
self-sustainability when the system works with energy harvesters (i.e. solar cells). This
paper is organized as follows: Sect. 2 describes the existing work on using sound to
monitor beehives; Sect. 3 describes the system architecture Sect. 4 outlines the low
power context recognition; Sect. 5 shows experimental results of the in-field imple-
mentation of the demonstration system; and Sect. 6 concludes the paper.

2 Related Work

Research on mobile and wearable sensors systems has been very prolific in recent years
with a variety of solutions in a wide range of application scenarios [3, 5]. Between
them, there are many examples of implemented and deployed wearable devices that
attempt to exploit intelligent sensing, wireless communication and computing abilities
to monitor human activities [1]. Machine learning has been applied in a wide range of
applications [7, 8], and in the field of embedded sensor devices has been very active in
especially due to the Smartphone’s increased computational power and the availability
of on-board MEMS sensors (i.e. accelerometers, gyroscope) [9, 11, 12]. In fact, many
recent works use Smartphone’s and MEMS for activity recognition, crowd sensing, fall
detection among many others [6, 12, 20]. For this reason, there are a huge number of
classification algorithms from the machine learning area for smartphones, including
decision trees, k-nearest neighbors, support vector machines (SVMs), naïve Bayes and
more recently neural networks (NNs) [12–14]. A more detailed analysis is presented in
[15] with accelerometers on both wrists, shoulder, legs, hip, and both ankles and
different combinations of them. Accuracy with only one accelerometer on the left wrist
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was between 5 % and 95 % for 8 classes (sitting, standing, walking, upstairs, and
downstairs, handshake, whiteboard and keyboard). Better results were achieved with
accelerometer on the shoulder, wrist and elbow where accuracies between 40 % and
99 % has been achieved and 85 % in average when one sensor was placed on one leg.
Another interesting study was done by Porzi et al. [17], where a system was built on the
Sony ecosystem of Sony Xperia Z smartphone and Sony SmartWatch. The system was
implemented using a smartphone for gesture recognition for use by the visually
impaired. They presented an optimized kernel method (global alignment kernel) for
discrete-time warping in SVMs. Discrete time warping allows to map similar gestures
when moving at different speeds. Secondly, they implemented logo recognition like the
“wet floor sign” where the camera of the smartphone was used. A recognition rate of
95.8 % was achieved.

Our works focuses on machine learning optimized for low power microcontrollers
with limited resources, and on using sensor fusion, with camera and microphone,
instead of a single low power sensor, such as a motion sensor. In the proposed work we
investigate algorithms which can process the data close to the sensors instead of
sending the data to a remote host or smartphone. Recently, many approaches tried to
classify users’ activities by deploying several heterogeneous sensors on the human
body such as accelerometers, camera, acoustic, and temperature to capture character-
istic repetitive motions, postures, and sounds of activities [16, 18]. However, the main
challenges of wearable design are to prolong the operating lifetime and to enhance
usability, maintenance, and mobility, while keeping a small and unobtrusive form
factor. Low power embedded machine learning is still challenging due to the limited
computational resources, limited power budget and the high requirements of the
algorithms [21]. In this work we focus in low power heterogeneous sensors, optimizing
the hardware and energy-efficient high accuracy machine learning algorithms to
achieve a self-sustainable system.

3 System Architecture

Figure 1 shows the architectural overview of the smart watch whit different voltage
domains and power switches to achieve energy efficiency. The core of the proposed
hardware consists of the microcontroller TI MSP430FR5969. This 16-bit microcon-
troller has 2 kB of SRAM and 64 kB of non-volatile FRAM which uses less power
than other non-volatile memories and reduces the gap in speed with the SRAM. The
MSP430 also supports different low power modes which allows us to decide which
components of the microcontroller are supplied. In low power mode LP4.5 it is praised
to typically use 20 nA and in active mode 800 µA at a clock frequency of 8 MHz. The
proposed system is equipped with a camera, a microphone, an accelerometer, and a
temperature sensor. Furthermore the device can communicate using NFC and
optionally by Bluetooth when the layer 2 board of the smart watch containing a
Bluegiga WT12 module is attached. As an alternative, an external device can be
attached to the UART pins by the main pin socket. Figure 2 shows the developed smart
watch used to collect sensor data in real life indoor and outdoor scenarios. Additional
memory is provided by a micro SD card holder with which a micro SD card can be
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connected to the microcontroller using SPI. To minimize possible power consumption,
each sensor can be completely switched off by a low-leakage load-switch with a
quiescent current of 240 nA. The temperature sensor is directly supplied by an output
pin from the microcontroller such that power is only consumed when temperature is
measured and no additional load switch is needed. A load-switch for the accelerometer
was resigned because leakage current in standby mode is only 10 nA.

Energy Harvesting and Voltage Suppliers. The device supports a power harvester
chip TI BQ25570, which manages a LiPo rechargeable battery and solar cells. The
internal DC-DC converter of the harvester chip can be set to a variable output voltage.
This has been used to realize voltage scaling from 3.0 V down to 2.0 V, leading to
much lower power consumption because dynamic power is related to the voltage
squared:

Pdyn ¼ aCV2f ;

where a is the switching rate, C is the load capacitance, V is the supply voltage and f is
the operating frequency. The power harvester contains a highly efficient boost con-
verter and supports maximum power point tracking.

In order to optimize the power consumption there are three different power
domains. The peripherals are supplied with the buck converter TPS62740 from Texas
Instruments which has an operating quiescent current of 460 nA and typically 70 nA in
shutdown mode. The microphone is supplied separately with 1.2 V by the buck con-
verter LTC3406ES5-1.2.

Camera. The camera is the ultra-low power 112� 112 pixel gray-scale CMOS
camera Centeye Stonyman, which has a focal plane size of 2.8 mm × 2.8 mm and a
pixel pitch of 25 µm [22] that consumes only 2 mW@3.3 V. The camera comes on a
pre-soldered PCB containing the image sensor and an objective lens and is connected
to the smart watch by a socket connector. The camera provides an analog output which
is connected with the internal ADC of the MSP430 [19].

Fig. 1. Overview of the system architecture.
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Accelerometer. The accelerometer used is a ULP ADXL362 from Analog Devices
with high resolution down to 9:8 � 10�3m/s2. It needs 1.8 µA while sensing at 100 Hz
and only 10 nA in standby mode and provides a burst mode including a FIFO buffer.
This mode allows consecutive reading of the acquired sensor data. The microcontroller
can do other jobs in parallel or enter a low-power mode. The accelerometer is con-
nected to the microcontroller via the SPI interface and with two status signals. These
status signals can be used to interrupt or wake the microcontroller up, when a prede-
fined event happens like acceleration exceeds some threshold or the FIFO-buffer is full.

Microphone. The microphone which was used is the low-power microphone
INMP801 which was mainly designed for hearing aids and consumes 17 µA at a
supply voltage of 1.2 V and outputs a voltage of 570 ± 159 mV. The audio signal is
amplified by a TI LMV951. Also this sensor is connected to the internal ADC of the
MSP430.

Temperature Sensor. The temperature sensor is a Negative Temperature Coefficient
Thermistor (NTC) thermistor from Epcos/TDK which is used in a voltage divider
configuration and connected to the ADC.

4 Low-Power Context Recognition

Context awareness provides completely new use cases for a smart watch and makes it
much more user-friendly. Figure 3 shows the software stack of the smart watch, where
the close interaction between hardware and software directly on board can be seen. Our
context recognition tries to classify the context of the action that is being performed by
the wearer and the surroundings of the smart watch. It does so based on the data
available from the many different sensors.

In order to train a classifier we need to collect and label a dataset. We chose 3
classes: public transport, office, and cafeteria, and acquired data from the temperature
sensor, accelerometer, camera and microphone. Each data item lasts 5 s and contains
8 kHz audio data, 100 Hz 3-axis accelerometer measurements, one temperature read-
out and one image of 112 × 112 grayscale pixel. Each of the classes has several hours
of labeled data.

Fig. 2. Picture of the smart watch.
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4.1 Feature Extraction and Selection

Performing classification on the acquired raw sensors data directly yields very poor
results, because they usually represent the information in an unfavorable way, e.g. such
that very little noise or small variations of the environment yield orthogonal repre-
sentations. This is overcome by extracting features from this data. For the different
types of sensors, there are different suitable features. For the sensors hosted by
developed smart watch the possibility are as follow:

• For the audio data, we use the number of zero crossing with a 1 % hysteresis, the
average energy of the signal, the maximum absolute value and dispersion. We also
use features from the frequency domain, such as the spectral centroid, the band-
width, and the well-known Mel-frequency cepstral coefficients (MFCCs).

• For the accelerometer data, we compute mean, variance, energy, covariance
between the axes, the dynamic range and the frequency-domain entropy.

• For the temperature we calculate the average rate of change, mean, variance, and
dynamic range.

• For the camera data we computed the mean (avg. brightness), variance and contrast.

Many of these features have an intuitive meaning, like the energy of a segment of the
audio stream, which provides an indication of the loudness. In total we found 65
different features which are summarize in Table 1. There are 27 time domain feature, (4
for microphone, 16 for the accelerometer, 4 for the temperature sensor, 3 for the
camera) and 38 features in frequency domain for microphone and accelerometer.
Among the microphone feature there are 14 using Discrete Furier Transform (DFT) and
14 using Mel frequency.

Fig. 3. Software stack of the smart watch

Table 1. Total pool of features for different sensors.

Sensor Time Frequency Total

Microphone 4 4 + 14(DFT) + 14(Mel) 36
Accelerometer 16 6 21
Temperature 4 4
Camera 3 3
Total 27 38 65
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However, a large amount of features will increase the evaluation energy, and as our
first goal is to have an energy-efficient system, we chose to perform feature selection,
keeping only a fixed number of features.

Ideally we would choose a feature set Ŝ� �S of some fixed cardinality Ŝ
�
�
�

�
�
� ¼ N

among all features �S ¼ S

i F i, such that we maximize the mutual information between
the selected features and the set of target classes C, i.e.

Ŝ ¼ argmaxSD S; Cð Þ; D S; Cð Þ ¼ I F1; . . .;FN ;Cð Þ:

Solving this optimization problem is called max-dependency feature selection. How-
ever, with limited training data the estimated densities p x1; . . .; xNð Þ and p x1; . . .;ð xN ; cÞ,
where x1; . . .; xN are possible values for the various features and c 2 C is the target class,
are not very accurate. This makes it pointless to solve the above optimization problem,
since the mutual information cannot be calculated with reasonable precision.

A simple approximation of the above problem is looking for the most relevant
features, maximizing the mutual information individually with D S; Cð Þ ¼
1
Sj j
PN

i¼1 I Fi;Cð Þ. Among the best features according to the solution of the maximum

relevance problem, these are the mean of the temperature, the mean of the camera
image, the spectral energy and entropy of the accelerometer axes, followed by a long
list of audio features.

4.2 Classification
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There are many well-known classification algorithms and concepts, ranging from
simple decision trees to support-vector machines, nearest-neighbor algorithms and
boosting to random forests, neural networks, naïve Bayes and complex graphical
models, to name just a few. We perform the classification using a decision tree which is
constructed using the continuous C4.5 algorithm (cf. Algorithm 1). The individual
features of a data sample x are addressed by subscript, i.e. x1 denotes the first feature.
The decision tree was chosen because of its low computational complexity and con-
sequential high energy efficiency during classification (as opposed to during learning)
[1]. For performing the classification, there is only the decision tree, which has to be
descended doing the corresponding comparisons until arriving at a leaf.

Decision trees are very susceptible to overfitting, so particularly with our
continuous-valued and limited amount of training data this is an issue. It can be
approached using bottom-up pruning, where leaves with only few samples (below
some threshold) are combined to a single leaf of the most probable class. Pruning is
also done offline and can only improve the time required for classification.

5 Measurement Results

In a first step, we tune the feature selection to choose the optimal number of features.
The feature selection and construction of the decision tree were performed on the
training set. The training set has been acquired using 7 subjects wearing the smart
watch for 24 h and collecting data from all sensors. For each class a minimal number of
500 samples have been used for the training set. The results shown in Fig. 4 are the
classification accuracy of the test set. The mean accuracy was best when selecting the
21 features of maximal relevance and minimal redundancy. With the low-complexity
classification system presented here, we were able to achieve a mean accuracy of
81.5 % for all classes using 21 features.

Fig. 4. Class-wise 1-vs-all accuracy depending on the number of features selected using the
relevance evaluated with mutual information with data from all sensors.
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To give more insight into the limitations, we present the confusion matrix in Fig. 5.
The classes are very well identified from 73.2 % to 89.5 %, and we are expected to
achieve even better performance when training the system with more subjects and data.

Energy vs. Accuracy. An important evaluation we measured is the link between
energy used by the combination of sensors and the accuracy achieved. As the various
sensors require a substantial amount of power, clearly, there is a trade-off between
which sensors are used and what accuracy can be achieved. We visualize this trade-off
in Fig. 6, considering only the data of some of the sensors mentioned. The energies
presented here are based on the measurements during sensor data acquisition and
estimates based on counts of the number of required operations for the feature
extraction. As expected, utilizing all sensors achieves the best accuracy but also has
high energy consumption. Another interesting result is the improved performance (in
energy and accuracy) of the ultra-low power camera against the accelerometer which
commonly is considered a low power high accuracy sensor. This demonstrates that the
accelerometer is an ideal sensor for detecting motions (i.e. walking, running, gesture,
etc.) but can be overcome in the context detection. In fact the camera needs less than
100 ms (so very small energy required) to acquire a frame but gives a lot of information
while the accelerometer needs seconds (at least 1 in our classificatory) to acquire
sufficient data for classification. Also it is interesting that the microphone over performs

Ø 81.5%
PT Office Cafetteria.

Publ. Transp. 81.8 13.6 4.6

Office 7.2 89.5 3.3

Cafeteria 17.2 9.6 73.2

Fig. 5. Confusion Matrix using 21 features.

Fig. 6. Achieved accuracy by used sensors with annotated pareto-optimal points.
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both the camera and accelerometer in accuracy but, of course, it is more expensive in
terms of energy, as more energy is required by the sensor and frequency domain feature
computation.

Lifetime Estimation. To evaluate the life time and self-sustainability of the proposed
solution, we measured the energy for the acquisition of all sensors and feature calcu-
lation. The evaluation setup was preformed acquiring 1 picture for the camera, 1 data
from the temperature sensor, 1 s of accelerometer data, and 1 s of microphone data,
and we compute all 65 features for the classification algorithm to have a worst case.
With this set up the energy needed for single classification is only 2.28 mJ. To evaluate
the lifetime we assume that we use a small Li-Ion battery with 150 mAh capacity and
4.2 V. For the power harvester which we used an average value of the calculations are
based on an average power generation of 40 µW. As we demonstrated in previous
work [19] this is a pessimistic value that can be easily harvested from a wrist band with
eight 1 × 4 cm solar cells. To evaluate the idle energy, when the smartwatch is not
performing any classification, we measured the quiescent power of the developed
version of smart watch (only 9 µW). Figure 7 shows the different lifetime according to
the classification duty cycle. It can be observed that when there is no acquisition and no
harvesting, the device can last for more than 661 days, which highlights the low
quiescent energy. When the features are calculated continuously for all sensors,
11 days are possible. If a sensor acquisition is taken every 10 s, the device could last
for more than 95 days. If this is further reduced to a periodicity of once per day,
660 days are possible. When considering the power harvester is plugged in, the device
can do classifications every 10 s for more than 113 days. Self-sustainability is reached
when a classification is performed every 745 s. But with a 5-min cycle more than
5,617.52 days are possible (15.5 years).

6 Conclusions and Future Work

We implemented a prototype of smart watch trained to recognize context directly on
board and achieve self-sustainability. The smartwatch hosts an ultra-low power gray-
scale camera, a MEMS microphone, a 3-axes accelerometer, and an analog temperature
sensor. Moreover the device is equipped with a solar harvester and rechargeable Li-Ion
battery to continuously recharge the battery even in indoor scenario. The implemented

Activity Run time [d] Activity Run time [d]
Idle 661.38 Every 745 sec.
Every day 660.92 Every 5 minutes 5617.52
Every hour 650.69 Every minute 729.89
Every 30 minutes 640.34 Every 10 seconds 113.37
Every minute 333.10 Permanent 11.20
Every 10 seconds 95.67
Permanent 11.00

Fig. 7. Life time and self-sustainability analysis. This figure shows the life time based on one
full battery charge without and with energy harvesting in the left and right table, respectively.
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classifier is suitable for ultra-low power microcontrollers and this system demonstrates
the recognition of various scenarios directly on board the existing smart watch, an
accelerometer alone cannot achieve this without a smart phone. The experimental
results confirmed both the benefits of the data fusion and the energy efficiency of the
solution. Even if the dataset used for the training was not huge the preliminary results
show a mean accuracy of 82.5 % when classifying 3 cases with peak of 89 %. In future
work we are planning to improve the training dataset to have more labelled classes and
that should increase the overall accuracy of the algorithm. Moreover, a full version of
the context recognition algorithm will be implemented on the smart watch and tested in
the field.

Acknowledgments. This work was supported by the SCOPES SNF project (IZ74Z0_160481).

References

1. Ghasemzadeh, H., Jafari, R.: Ultra low-power signal processing in wearable monitoring
systems: a tiered screening architecture with optimal bit resolution. ACM Trans. Embed.
Comput. Syst. (TECS) 13, 9 (2013)

2. Kahn, J., Yuce, M.R., Bulger, G., Harding, B.: Wireless Body Area Network (WBAN)
design techniques and performance evaluation. J. Med. Syst. 36(3), 1441–1457 (2012)

3. Hung, K., et al.: Ubiquitous health monitoring: integration of wearable sensors, novel
sensing techniques, and body sensor networks. In: Adibi, S. (ed.) Mobile Health, pp. 319–
342. Springer, Heidelberg (2015)

4. Pejovic, V., Musolesi, M.: Anticipatory mobile computing: a survey of the state of the art
and research challenges. ACM Comput. Surv. (CSUR) 47(3), 47 (2015)

5. Perera, C., et al.: Context aware computing for the Internet of Things: a survey. IEEE
Commun. Surv. Tutor. 16(1), 414–454 (2014)

6. Anjum, A., Ilyas, M.U.: Activity recognition using smartphone sensors. In: IEEE Consumer
Communications and Networking Conference (CCNC) (2013)

7. Sharma, S., et al.: Machine learning techniques for data mining: a survey. In: IEEE
International Conference on Computational Intelligence and Computing Research (ICCIC)
(2013)

8. Govindaraju, V., Rao, C.: Machine Learning: Theory and Applications. Elsevier, New York
(2013)

9. Azizyan, M., et al.: SurroundSense: mobile phone localization via ambience fingerprinting.
In: Mobicom, pp. 261–272 (2009)

10. Kerhet, A., et al.: Distributed video surveillance using hardware-friendly sparse large margin
classifiers. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS),
pp. 87–92 (2007)

11. Chon, Y., et al.: Mobility prediction-based smartphone energy optimization for everyday
location monitoring. In: SenSys 2011, pp. 82–95 (2011)

12. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors.
IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)

13. Gokgoz, E., Subasi, A.: Comparison of decision tree algorithms for EMG signal
classification using DWT. Biomed. Signal Process. Control 18, 138–144 (2015)

342 M. Magno et al.



14. Silva, J., et al.: Human activity classification with inertial sensors. In: PHealth: International
Conference on Wearable Micro and Nano Technologies for Personalized Health, vol. 200,
p. 101 (2014)

15. Weddell, A.S., et al.: A survey of multi-source energy harvesting systems. In: Conference on
Design, Automation and Test in Europe (DATE), pp. 905–908 (2013)

16. Maurer, U., et al.: eWatch: a wearable sensor and notification platform. In: International
Workshop on Wearable and Implantable Body Sensor Networks (BSN), p. 145 (2006)

17. Porzi, L., et al.: A smart watch-based gesture recognition system for assisting people with
visual impairments. In: ACM International Workshop on Interactive Multimedia on Mobile
& Portable Devices (IMMPD), pp. 19–24 (2013)

18. Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome,
T.: Object-based activity recognition with heterogeneous sensors on wrist. In: Kay, J.,
Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319,
pp. 246–264. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12654-3_15

19. Magno, M., et al.: InfiniTime: a multi-sensor energy neutral wearable bracelet. In:
International Green Computing Conference (IGCC) (2014)

20. Seong, K.E., et al.: Self M2M based wearable watch platform for collecting personal activity
in real-time. In: IEEE Conference on Big Data and Smart Computing (BIGCOMP), pp. 286–
290 (2014)

21. Zhu, Z., et al.: Fusing on-body sensing with local and temporal cues for daily activity
recognition. In: ICST International Conference on Body Area Networks, pp. 83–89 (2014)

22. Centeye, Inc., Centeye Stonyman/Haskbill silicon documentation (2013)

Ultra-Low Power Context Recognition Fusing Sensor Data 343

http://dx.doi.org/10.1007/978-3-642-12654-3_15

	Ultra-Low Power Context Recognition Fusing Sensor Data from an Energy-Neutral Smart Watch
	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Low-Power Context Recognition
	4.1 Feature Extraction and Selection
	4.2 Classification

	5 Measurement Results
	6 Conclusions and Future Work
	Acknowledgments
	References


