
DriverGen: Automating the Generation of Serial
Device Drivers

Jiannan Zhai1(B), Yuheng Du2, Shiree Hughes1, and Jason O. Hallstrom1

1 Institute for Sensing and Embedded Network Systems Engineering,
Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA

{jzhai,shughes2015,jhallstrom}@fau.edu
2 School of Computing, Clemson University, Clemson, SC 29634, USA

yuhengd@clemson.edu

Abstract. Microprocessors operate most serial devices in the same way,
issuing commands and parsing corresponding responses. Writing the
device drivers for these peripherals is a repetitive task. Moreover, mea-
suring the response time of each command can be time-consuming and
error prone. In this paper, we present DriverGen, a configuration-based
tool developed to provide accurate response time measurement and auto-
mated serial device driver generation. DriverGen (i) simulates the com-
mand execution sequence of a microprocessor using a Java program run-
ning on a desktop, (ii) measures the response time of the target device to
each command, and (iii) generates a device driver based on the received
responses and measured response times. To evaluate DriverGen, three
case studies are considered.

1 Introduction

Our work is motivated by the recurrent structure of most serial device drivers
and the importance of accurate timing. The main contributions of our work are
as follows: (i) We present a serial device driver configuration language that gen-
eralizes the specification of a serial device driver. (ii) We present an approach
that measures response times with precision on the order of 10 s of microsec-
onds by monitoring data signals in the communication interface. (iii) We imple-
ment DriverGen, a configuration-based tool developed to accurately measure
response times, and to automatically generate the specified serial device driver.
(iv) Finally, we evaluate DriverGen, considering the performance of generated
drivers for three serial devices.

2 Related Work

Automated driver synthesis is discussed in [8]. Ratter proposes synthesis as a
method to ensure correct driver construction. A state machine is generated auto-
matically using specifications for both the device and the (desktop) operating
system, and ultimately supports the generation of a driver for the device in C.
We similarly provide the ability to generate a microprocessor driver for device
communication. When generating a driver for a microprocessor, we experience
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 325–330, 2016.

DOI: 10.1007/978-3-319-47075-7 37



326 J. Zhai et al.

the added challenges of memory and power constraints, timing precision, and a
single-threaded operating system. Our driver must be efficient with respect to
both memory usage and power consumption.

Another method for automating device driver generation is Termite [9]. Ter-
mite acts as an interface between the OS and a target device. It uses a formal
specification of the device to generate a set of OS-independent commands. It
allows the device creator to focus on the device, and the OS expert to focus on
the OS, and still create a communication link between the two. Similarly, we
create a method to automatically generate drivers for serial devices, eliminating
the need for developers to manually write the drivers.

In [6], O’Nils et al. show that by using synthesis, development time can
be reduced by as much as 98 %. Their method uses ProGram, a specification
language, to model the behavior of a device based on sequences of permissible
events. Three inputs are required to synthesize the device driver from its behav-
ior: architecture independent protocols, a specification of the processor and bus
interface, and a specification of the target operating system.

An important requirement of automatically generated code is that the quality
must be equal to or surpass that of hand-written code. In [7], O’Nils et al. argue
that their tool produces a quality driver (generated in C) that is comparable to
handwritten code. This tool requires a protocol specification for both the device
and the operating system.

3 System Design/Implementation

DriverGen is based on the observation that all serial device drivers work in almost
the same way. Our system simulates the execution of each command and generates
the target device driver based on the execution results. Each command sequence
is implemented as a function in the driver. To match the response pattern and
save the desired information, we implement regular expression libraries in Java
and C, used by DriverGen and the generated drivers, respectively. To determine
if the target device is responding, or the response is finished, timeouts are used,
making accurate timing important. DriverGen monitors the UART communica-
tion signals to measure the response time of a device to each command (response
time), and the time between bytes in the response (inter-byte times).

3.1 Hardware Setup

Fig. 1. Hardware setup

The DriverGen hardware,
shown in Fig. 1, consists of
a desktop running a Java
program, two FT232R chips,
and a MoteStack [3]. The
FT232R chips are used by
the desktop to communicate
with the target device and a



DriverGen 327

MoteStack, respectively. The MoteStack is used to monitor the UART data sig-
nals to measure the response and inter-byte times.

3.2 Driver Configuration

DriverGen runs based on a driver configuration file that is used to configure
UART communication, control execution of each command, and generate the
target driver. The configuration parameters specify (i) basic driver information,
such as driver name, version; (ii) global definitions, such as response timeout,
which specifies the maximum time before the first response byte should be
received; and (iii) function details, such as function names, the commands to
be sent to the target device, the responses expected, and other information.

3.3 System Architecture

The DriverGen system consists of three modules. The Parser module is used to
read, parse, and validate a driver configuration. The Executor module is used to
execute the functions specified in the configuration, and to control the MoteStack
to measure response times and inter-byte times. The Generator module is used
to generate the driver source code based on the configuration parameters and
execution results.

4 Evaluation

We now present our evaluation of the driver generation approach. We introduce
three serial devices and corresponding applications previously developed to oper-
ate with functionally equivalent, time-tested, handwritten drivers. We validate
the correctness of each generated driver via substitution within the correspond-
ing application. Finally, we consider the relative performance of the drivers, both
in terms of space and execution speed.

In our experiments, the drivers and applications are implemented based on
the AVR platform. To evaluate the WiFi and cellular devices, a standard x86
server is used to collect data sent from the devices.

4.1 Test Devices and Applications

Three serial devices are used to evaluate our approach. The WH2004A is an
LCD device that executes commands to display characters. The RN131 is a
standalone embedded WiFi device with built-in TCP/IP support. The GM862
is a quad-band GSM/GPRS cellular modem with built-in TCP/IP, FTP, and
SMTP support.

To evaluate the generated driver for the WH2004A, an application which
detects a door trespassing event and displays the event counts on the LCD is
used. Since the WH2004A does not respond to incoming commands, the eval-
uation is focused on correctness only. The generated driver displayed the event
counts without any errors for 100 door trespassing events.



328 J. Zhai et al.

To evaluate the generated drivers for the RN131 and GM862, two test appli-
cations were used. The applications sense data from a group of sensors every
10 and 120 s, respectively, and record the execution time of each function. Sen-
sor readings and execution times are then sent to a server. Each application is
configured to perform 1000 transmission rounds in each test, and the average is
used. Based on stored messages in the database, both drivers work as expected.

4.2 Performance Evaluation

We next evaluate the performance of the generated drivers relative to the hand-
written drivers, both in terms of space and execution speed. We focus on the
WiFi and cellular devices.

Execution Speed. We first evaluate the execution speed of the generated
drivers by sending 1000 850-byte messages to the server and tracking the exe-
cution time of each associated function. Figures 2a and b summarize the speed
of the generated driver functions for the RN131 and the GM862 compared to
the handwritten drivers. The x-axis represents the driver functions, and the y-
axis represents the average cumulative execution time, in seconds, in a single
transmission round. The functions are ordered by execution time, in decreasing
order from left to right. As the figures illustrate, the generated drivers run faster
than the handwritten drivers across all functions. The speed-up is achieved by
reducing the time spent waiting for each response. The cumulative speed-up
is proportional to the number of executions of each function in a transmission
round. For example, in each round, the gm862 gsm registered function executes
approximately 40 times before detecting a valid network registration. Therefore,
it shows a high speed-up in Fig. 2b. For the GM862, the overall execution time
in each round is 48.50 s for the generated driver, compared to 59.60 s for the
handwritten driver. For the RN131, the overall execution time in each round is
11.99 s for the generated driver, and 14.68 s for the handwritten driver.

Memory Usage. We next evaluate the memory overhead introduced by the
generated drivers. Avr-size is used to collect the memory data. Figure 3a sum-
marizes the drivers’ program memory (ROM) usage. The x-axis represents the
drivers, and the y-axis represents size, in bytes. The hashed area represents
ROM overhead introduced by the regular expression library. The ROM over-
head is approximately 3400 bytes for both drivers. Figure 3b summarizes the
drivers’ data memory (RAM) usage. Again, the x-axis represents the drivers, and
the y-axis represents size, in bytes. The hashed area represents RAM overhead
introduced by the regular expressions used in the generated driver. The RAM
overhead is closely related to the number of regular expressions used. Since the
GM862 requires more regular expressions, the overhead for the GM862 is slightly
larger than the WiFi chip, at 503 bytes.



DriverGen 329

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

0
0

.5
1

.0
1

.5
2

.0
2

.5
2.01

1.91

0.59
0.55 0.5

0.43
0.44

0.42
0.42

0.38
0.41

0.37
0.41

0.39
0.41

0.38
0.41

0.37
0.41

0.38
0.38

0.280.16
0.15

wifly
_obta

in_ip

wifly
_ente

r_
cm

d_m
ode

wifly
_se

t_
wke

y

wifly
_se

t_
re

m
ote

_host

wifly
_sa

ve

wifly
_se

t_
re

m
ote

_port

wifly
_se

t_
io_m

ask

wifly
_se

t_
io_fu

nc

wifly
_se

t_
ss

id

wifly
_se

t_
ip_m

ode

wifly
_se

t_
loca

l_port

wifly
_exit

_cm
d_m

ode

Handwritten Driver

Generated Driver

(a) RN131

E
x
e

c
u

ti
o

n
 T

im
e

 i
n

 S
e

c
o

n
d

s

0
2

4
6

8
1
0

1
2

1
4

12.95

4.61

9

7

3.29
2.89 2.98

0.96

2.03
1.45 1.67

0.38

1.31
0.93 0.71

0.57 0.31
0.09

0.3
0.07

gm
862_gsm

_re
gist

ere
d

gm
862_se

t_
defa

ult_
pro

file

gm
862_tcp

_disc
onnect

gm
862_ente

r_
co

m
m

and_m
ode

gm
862_tcp

_co
nnect

gm
862_gprs

_re
gist

ere
d

gm
862_acq

uire
_ip

gm
862_sle

ep

gm
862_cu

rre
nt_

tim
e

gm
862_rs

si

Handwritten Driver

Generated Driver

(b) GM862

Fig. 2. Driver function execution time

R
O

M
 M

e
m

o
ry

 U
s
a
g
e
 i
n
 B

y
te

s

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

7390

20838

10842

7032

24200

20360

RN131 GM862

Generated Driver

Regular Expressions

Handwritten Driver

Excluding Regular Expressions

(a) Driver ROM Usage

R
O

M
 M

e
m

o
ry

 U
s
a

g
e

 i
n

 B
y
te

s
0

5
0

0
1

5
0

0
2

5
0

0
3

5
0

0

565

2558

900

587

3061

2598

RN131 GM862

Generated Driver

Regular Expressions

Handwritten Driver

Excluding Regular Expressions

(b) Driver RAM Usage

Fig. 3. Memory usage

5 Conclusion

We described a configuration-based system to automatically generate serial
device drivers and accurately measure the timeout characteristics associated
with each driver command. Results show that the generated drivers perform as
expected, introducing modest memory overhead. Importantly, the execution time
of each command is reduced compared to the handwritten drivers. As a result,
driver performance is increased, and improved energy efficiency is achieved.

Acknowledgments. This work is supported by the NSF through awards CNS-
1541917 and CNS-1545705.

References

1. CESANTA. SLRE: super light regular expression library, September 2013.
slre.sourceforg.net/

2. Chou, P., Ortega, R., Borriello, G.: Synthesis fo the hardware/software interface
in microcontroller-based systems. In: Proceedings of the 1992 IEEE/ACM Inter-
national Conference on Computer-Aided Design, ICCAD 1992, pp. 488–495. IEEE
Computer Society Press, Los Alamitos (1992)

http://slre.sourceforg.net/


330 J. Zhai et al.

3. Eidson, G.W., Esswein, S.T., Gemmill, J.B., Hallstrom, J.O., Howard, T.R.,
Lawrence, J.K., Post, C.J., Sawyer, C.B., Wang, K.C., White, D.L.: The south
carolina digital watershed: end-to-end support forreal-time management of water
resources. IJDSN, 1 (2010)

4. Li, J., Xie, F., Ball, T., Levin, V., McGravey, C.: Formalizing hardware/software
interface specifications. In: Procceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2011, pp. 143–152. IEEE
Computer Society, Washington (2011)

5. Locke, J.: Jakarta regexp Java regular expression package, April 2011.
jakarta.apache.org/regexp/

6. O’Nils, M., Jantsch, A.: Operating system sensitive device driver synthesis from
implementation independent protocol specification. In: Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 562–567 (1999)

7. O’Nils, M., Jantsch, A.: Device driver and DMA controller synthesis from HW/SW
communication protocol specifications. Des. Autom. Embed. Syst. 6(2), 177–205
(2001)

8. Ratter, A.: Automatic device driver synthesis from device specifications. The Uni-
versity of New South Wales, November 2012

9. Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., Heiser, G.: Automatic device driver
synthesis with termite. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP 2009, pp. 73–86. ACM, New York (2009)

10. Shier, P., Garban, P.L., Oney, A.: System and method for validaitng communi-
cation specification conformance between a device driver and a hardware device.
US2005246722 (2005)

http://jakarta.apache.org/regexp/

	DriverGen: Automating the Generation of Serial Device Drivers
	1 Introduction
	2 Related Work
	3 System Design/Implementation
	3.1 Hardware Setup
	3.2 Driver Configuration
	3.3 System Architecture

	4 Evaluation
	4.1 Test Devices and Applications
	4.2 Performance Evaluation

	5 Conclusion
	References


