
Automatically Quantitative Analysis and Code
Generator for Sensor Systems: The Example
of Great Lakes Water Quality Monitoring

Bojan Nokovic(B) and Emil Sekerinski

Computing and Software Department, McMaster University, Hamilton, Canada
{nokovib,emil}@mcmaster.ca

Abstract. In model-driven development of embedded systems, one
would ideally automate both the code generation from the model and the
analysis of the model for functional correctness, liveness, timing guaran-
tees, and quantitative properties. Characteristically for embedded sys-
tems, analyzing quantitative properties like resource consumption and
performance requires a model of the environment as well. We use pState
to analyze the power consumption of motes intended for water qual-
ity monitoring of recreational beaches in Lake Ontario. We show how
system properties can be analyzed by model checking rather than by
classical approach based on a functional breakdown and spreadsheet cal-
culation. From the same model, it is possible to generate a framework of
executable code to be run on the sensor’s microcontroller. The goal of
model checking approach is an improvement of engineering efficiency.

Keywords: Water quality monitoring · Probabilistic model checking ·
Validation · Verification

1 Introduction

In this work we build a model for and analyze the power consumption of
water monitoring motes developed in the MacWater [1] project. The sensors
are intended for water quality monitoring of beaches on Lake Ontario, to sup-
plement and speed up the existing practice of manually taking water samples
and analyzing them in a lab. For battery-powered motes, power consumption
has the main impact on product usability. A shorter battery life requires more
frequent battery replacements. As the motes are deployed in buoys (placed on a
specific distance from the shore according to local regulations for testing water
quality of beaches), there is a significant effort in battery replacements or any
kind of maintenance.

There are two ways of power consumption evaluation (1) on the physical
hardware, by periodically measuring the remaining battery, or (2) by modelling.
In both cases, the interaction with the environment determines the power con-
sumption. While in the measuring approach inputs are real, in the modelling
approach they are simulated or synthetic. Modelling can be less accurate than
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 313–319, 2016.

DOI: 10.1007/978-3-319-47075-7 35

314 B. Nokovic and E. Sekerinski

measuring, but it can give designers flexibility and agility to evaluate complex
power consumption scenarios [2]. The classical approach to power model design is
based on a functional breakdown. First, power consumption is calculated follow-
ing a design process similar to the one described in [3,4]. Next, all activities that
are possible sources of power consumption or logical activities [5] are identified.
Finally power consumption is calculated manually by standard mathematical
operations or with the help of some tools, e.g. spreadsheet.

In our approach the system is first described by pCharts, a visual language
for specifying reactive behaviour. Then, after specifying power consumption in
relevant states, input code for a probabilistic model checker is automatically
created and power consumption calculated as a cost over probabilistic computa-
tional tree logic (PCTL) formulae. On the example of Waspmotes, commercial
Arduino-based motes by Libelium, we present the interaction between the envi-
ronment and a device as a complex probabilistic timed automaton (PTA), on
which it is still feasible to perform quantitative analysis by an off-the-shelf prob-
abilistic model checker. In addition to the calculation of power consumption, we
generate the framework of executable code to be run on a microcontroller. We
model complex embedded systems, but the code is executed on 8-bit microcon-
trollers with restricted resources.

2 Related Work

For power consumption evaluation by analytical modelling there are two
approaches: the evaluation of whole wireless sensor networks (WSN) [6,7], or
the evaluation of WSN applications [2]. The difference is that the evaluation of
whole wireless sensor networks includes an in-depth evaluation of communica-
tion protocols. This work is about evaluation of WSN application. It is already
shown that models created by Coloured Petri Nets (CPNs) can be used to esti-
mate power consumption of sensors [2]. We follow a similar approach but use
pCharts, extended hierarchical state machines. The main difference in our app-
roach is in the fact that power consumption on pCharts models is calculated by
probabilistic model checker. The random nature of environments impact implies
a need for a probabilistic evaluation of different power consumption scenarios.
In addition to this, from pCharts it is possible to generate framework of mote’s
executable code.

The experimental validation of probabilistic systems needs a bigger number
of tests to acquire credible results [8]. That may be a time-consuming task.
A short-cut to this problem is modelling together the device and environment
impact.

In our previous works we introduced the basic features of pState [9] and
described timed transitions [10]. In [11] we explained how the tool is designed,
and we show how a communication protocol for radio-frequency identification
(RFID) tags can be analyzed. In [12] we show on few simple examples how
properties are specified in an intuitive way such that they can be written without
knowledge of temporal logic. In this paper we are focused on the methodological

Automatically Quantitative Analysis and Code Generator for Sensor Systems 315

aspect and show that systems with tens of thousands states can be effectively
analyzed.

3 Waspmote Sensor Power Consumption

We show how pCharts can be used to model the power consumption of the end-
unit devices, and how to generate the framework for device-executable code. In
a collaborative research effort MacWater [1], new sensor types for water quality
indicators are developed. MacWater isa research project for mobile sensor devices
that can analyze water samples for biological and chemical contaminants in real-
time. The sensors and communication boards are connected to Waspmote, a type
of Arduino board [13]. Collected data, includes water pH factor, temperature,
and a current location of the sensor (longitude and latitude), is transmitted
to a nearby base station by a low power wireless protocol. The base station
is a multi-protocol router Meshlium [13] that sends data to the central server
either by WiFi or GPRS. Collected data are updated on the site, and all system
operates as soft real-time process.

For the purpose of this paper, we use commercially available sensors to mea-
sure pH of lake water, to read the geographic position of the sensor by GPS, and
to transmit data via the ZigBee protocol. In our experiment we also use sensors
to measure water conductivity, dissolved oxygen, and dissolved ions, which we
leave out here for brevity. We show how to specify the impact of the environ-
ment on the working device, and how to quantitatively verify that impact. The
model in Fig. 1 has three concurrent states Device, Environmnet and Test. The
state Device has itself four concurrent composite states Board, pH, ZigBee, and
GPS. The state Device represents behaviour of the Waspmote [13] water mon-
itoring mote. State Environment represents the impact of the environment on
GPS communication. We add state Test to specify queries to be quantitatively
verified by the model checker.

Initially, the state Board is in DeepSleep, state pH is in pHOff, state ZigBee
in ZigBeeOff, and state GPS in the GPSOff. Every 10 s, Board wakes up, and
broadcasts the event pHOn. On this event pH state goes from pHOff to pHSen-
sorOn and executes the command pHTurnOn. This command is a separately
written external function. For model checking, it is ignored, but it is used for
executable code generation.

In the state pHSensorOn, pH stays only 5 ms, to measure water acidity,
and then goes back to pHOff state. During this process it broadcasts pHRead
event and call TurnpHOff command. On the event pHRead, Board goes from
pHWarmUp to GpsWarmUp, and broadcasts event GpsOn.

On the event GpsOn, state GPS goes from initial state GpsOff to GpsCheck
and broadcasts event Connect. On this event, Environment moves form GpsEn-
vIdle to InitialDelay. The GPS is used to read a position of the device. In normal
operation, based on our measurements, is takes between 1.8 s and 2.2 s for GPS
to get connected. No connection is possible in less than 1.8 s, in 50 % of the
time a connection is establishes between 1.8 s and 2 s, in 60 % of time between

316 B. Nokovic and E. Sekerinski

Fig. 1. Wireless sensor power model in pCharts

2 s and 2.1 s. By 2.2 s the connection is always established. This is modelled by
probabilistic transitions between GpsEvnIdle state and Connecting4. When the
connection is established, boolean variable rec is set to true. In our model GPS
tries to acquire signal for 4.8 s, or every 200 ms for 24 times. Once the connection
is established, GPS goes into GetPosition state. Consumption in GPS depends on
how fast the connection is established, and that is modelled by probabilistic tran-
sitions in the Environment state. From state GetPosition, GPS goes back into
GPSOff, broadcasts GpsRead event and executes the TurnGpsOff command. On
broadcasted event GpsRead, Board goes from GpsWarmUp to ZigBeeWarmUp
and broadcasts event ZigBeeOn.

ZigBee, a low-power secure networking protocol, is used to transmit the col-
lected readings to a base station, from where data is further transmitted by a 3G
connection to a database. We modelled the power consumption in the transmit-
ting and receiving states, for data transmission and acknowledge reception. Once
this process is finished ZigBee goes back to ZigBeeOff, broadcasts ZigBeeRead
event and executes command TurnZigBeeOff. On the event ZigBeeRead, Board
goes from ZigBeeWarmUp to DeepSleep, broadcast the event Done and exe-
cutes the command GoToDeepSleep. The broadcasted event Done moves Test
from Testing to Query state, where the queries

“?P.min” “?P.max” “?$cons.min” (1)

Automatically Quantitative Analysis and Code Generator for Sensor Systems 317

for min and max probabilities (P), and min costs of the consumption ($cons)
are specified 1. They are used for the calculation of the probability that the
Board will go from initial DeepSleep back to DeepSleep mode, and to calcu-
late the consumption in one cycle. Current consumption is specified in mA val-
ues according to the specification from Waspmote technical documentation [13].
From the pChart in Fig. 1, a PTA model is automatically generated by flattening
the hierarchical structure and creating PRISM input code in the form of guarded
commands.

The translation scheme of the pCharts model into input code for probabilistic
model checker can be found in [10,12].

Rewards. Properties based on costs are specified on states or transition. In our
example, for each state of Device, the cost of consumption cons is specified. That
is passed to PRISM in the module rewards ... endrewards; for instance when
the board is in DeepSleep, the current is only 0.062 mA.

Results. The verification is done by the PRISM Digital Clock engine. The cre-
ated model has 17221 states and 17232 transitions. The calculated minimal and
maximal probabilities (P.min and P.max) to reach Query are the same and
1, which means that the test always terminates. There are no nondeterministic
transitions, so the min and max probabilities are equal. The calculated expected
minimal consumption (cons.min) is 248581.78 mAms, and it took 126.65 s to do
calculation. The maximum time of one cycle is a simple sum of deep sleep time
(10000 ms) and the times to read pH (5 ms), get position of GPS (2210 ms),
and send data by ZigBee (600 ms) which is 12815 ms. So, the average current
consumption is 248581.78 mAms/12815 ms = 19.39 mA. Waspmote devices are
usually powered by the battery of 6600 mAh, so according to our calculation
the battery can last for approximately 340 h, or 14.1 days. Thus we are able to
predict automatically the battery life from the model. All properties are verified
on Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz, 12.0 GB of RAM and on 64-bit
Operating System.

4 Conclusions

This paper presents power consumption evaluation of motes used for water
quality monitoring in the MacWater project. We show that hierarchical state
machines modelling formalism pCharts is suitable for representing both the
device and environment impact. Since input from the environment is of random
nature, we use probabilistic transitions for environment specification. Assigned
probabilities are based on the experimental evaluation of device to GPS signal
connection probability. Analyzing together the device and environmental impact
on the same model, allows different scenarios of the environmental impact to be
validated. That can be used for optimization of the device’s hardware and com-
munication protocol used in a sensor network. Obtaining same measurement by
experiment may give more accurate results, but would take more time, which
makes modelling as a more convenient approach.

318 B. Nokovic and E. Sekerinski

The generated model has about 17000 states and transitions, but the ver-
ification performed by PRISM model checker is done reasonably fast. The
pState architecture allows in principle other probabilistic model checkers like
MRMC [14], or some tool from the MoDeSt [15] toolset to be added. For bigger
models, statistical model checkers like Ymer [16] or Vesta [17] can be used.

From the same pCharts model, it is possible to generate code for embedded
microprocessors. The goal is to have a seamless and automated approach from
modelling and analysis to code generation that can be used by engineers to
evaluate design alternatives and to generate trustworthy code.

References

1. McMaster: MacWater, June 2015. http://macwater.org/
2. Damaso, A., Freitas, D., Rosa, N., Silva, B., Maciel, P.: Evaluating the power

consumption of wireless sensor network applications using models. Sensors 13(3),
3473 (2013). http://www.mdpi.com/1424-8220/13/3/3473

3. Negri, L., Sami, M., Tran, Q.D., Zanetti, D.: Flexible power modeling for wireless
systems: power modeling and optimization of two bluetooth implementations. In:
Cantarella, J. (ed.) Proceedings of 6th IEEE International Symposium on World of
Wireless Mobile and Multimedia Networks, pp. 408–416. IEEE Computer Society
(2005)

4. Negri, L., Chiarini, A.: Power simulation of communication protocols with StateC.
In: Vachoux, A. (ed.) Applications of Specification and Design Languages for SoCs,
pp. 277–294. Springer, Berlin (2006)

5. Mura, M., Paolieri, M., Fabbri, F., Negri, L., Sami, M.G.: Power modeling, power
analysis for IEEE 802.15.4: a concurrent state machine approach. In: Consumer
Communications and Networking Conference, pp. 660–664 (2007)

6. Rusli, M., Harris, R., Punchihewa, A.: Markov chain-based analytical model of
opportunistic routing protocol for wireless sensor networks. In: TENCON 2010–
2010 IEEE Region 10 Conference, pp. 257–262 (2010)

7. Cano, C., Sfairopoulou, A., Bellalta, B., Barceló, J., Oliver, M.: Analytical model
of the LPL with wake up after transmissions MAC protocol for WSNs. In: Inter-
national Symposium on Wireless Communication Systems (ISWCS 2009), Siena,
Italy, September 2009

8. Leopold, M.: Sensor network motes: portability and performance. Ph.D. disserta-
tion, Department of Computer Science, University of Copenhagen (2007)

9. Nokovic, B., Sekerinski, E.: pState: a probabilistic statecharts translator. In: 2013
2nd Mediterranean Conference on Embedded Computing (MECO), pp. 29–32
(2013)

10. Nokovic, B., Sekerinski, E.: Verification and code generation for timed transitions
in pCharts. In: Proceedings of the International C* Conference on Computer Sci-
enceand Software Engineering, Series, C3S2E 2014. ACM, New York (2014)

11. Nokovic, B., Sekerinski, E.: Analysis and implementation of embedded system mod-
els: example of tags in item management application. In: W01 1st Workshop on
Model-Implementation Fidelity (MiFi), Grenoble, France, p. 10 (2015)

12. Nokovic, B., Sekerinski, E.: A holistic approach to embedded systems development.
In: 2nd Workshop on Formal-IDE, Oslo, Norway, p. 14 (2015)

13. Libelium: Waspmote, July 2014. http://www.libelium.com/

http://macwater.org/
http://www.mdpi.com/1424-8220/13/3/3473
http://www.libelium.com/

Automatically Quantitative Analysis and Code Generator for Sensor Systems 319

14. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

15. Hartmanns, A.: Modest - a unified language for quantitative models. In: 2012
Forum on Specification and Design Languages (FDL), pp. 44–51, September 2012

16. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer,
Heidelberg (2005)

17. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST, pp. 251–252 (2005)

	Automatically Quantitative Analysis and Code Generator for Sensor Systems: The Example of Great Lakes Water Quality Monitoring
	1 Introduction
	2 Related Work
	3 Waspmote Sensor Power Consumption
	4 Conclusions
	References

