
DESALβ: A Framework For Implementing
Self-stabilizing Embedded Network Applications

Yangyang He1(B), Yuheng Du1, Shiree Hughes2, Jiannan Zhai2,
Jason O. Hallstrom2, and Nigamanth Sridhar3

1 School of Computing, Clemson University, Clemson, USA
{yyhe,yuhengd}@clemson.edu

2 I-SENSE, Florida Atlantic University, Boca Raton, USA
{shughes2015,jzhai,jhallstrom}@fau.edu

3 Electrical and Computer Engineering, Cleveland State University, Cleveland, USA
n.sridhar1@csuohio.edu

1 Introduction

The Dynamic Embedded Sensor-Actuator Language (DESAL) [2] is a rule-
based programming language, without events, interrupts, or hidden control.
Nodes have built-in access to their neighbors’ state, with automatic node dis-
covery and health monitoring. Applications communicate via shared variables,
rather than explicit message passing. Shared variables naturally represent the
state of self-stabilizing algorithms. DESAL simplifies the construction of self-
stabilizing embedded applications by eliminating network programming, while
offering significant reliability improvements.

Contributions. This paper presents both incremental and fundamental contri-
butions. First, we present DESALβ , a significant improvement of the DESALα

implementation reported in [1]. DESALβ includes a new, more complete com-
piler, with new support for C-based types and control flow constructs, as well
as a new C/nesC code mixing feature. A comparative performance analysis
between DESALα and DESALβ is presented. Second, and more fundamen-
tally, we present an in-depth treatment of a self-stabilizing algorithm realized in
DESALβ to assess the utility of the paradigm. The analysis centers not only
on ease-of-use, but on fault-tolerance and convergence time, post-fault. Prior
publications focused on grammar and architectural details.

2 Related Work

Prior work on programming approaches for embedded network systems span two
paths. The first is focused on node-level programming. Representative solutions
include Contiki [4], MANTIS [5], TinyOS [3], and others. Although the kernel
of Contiki is event-driven, preemptive multi-threading is supported through a
library. Contiki programs can be loaded dynamically and are C-based. Similarly,
MANTIS provides users with a cross-platform, event-driven operating system

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 307–312, 2016.

DOI: 10.1007/978-3-319-47075-7 34

308 Y. He et al.

that can be used to load programs dynamically. Programs for MANTIS are
written in C, with slight changes to the basic program structure, such as requiring
a start function instead of a main function, as well as other idioms. TinyOS
is another platform for wireless sensor networks (WSNs). Programs are written
in nesC, an event-driven language that derives from C [6].

The second path of prior work focuses on network-level macro programming,
which hides the details of individual sensor nodes from programmers. TinyDB [7]
and Cougar [8], for instance, abstract a WSN as a relational database and allow
the use of declarative SQL-based queries to retrieve data from the network.
Kairos [9] provides a shared memory abstraction to access one-hop neighbors
and acquire their data. Regiment [10] is a functional language that enables spa-
tiotemporal macroprogramming, which hides the direct manipulation of program
states from the programmer. It divides a larger network into abstract regions
and provides abstractions for querying the state across a region.

DESAL is introduced in [2]. It adopts five fundamental principles: (i) a
state-based model of programming, which abandons event-driven logic in favor of
state-based logic; (ii) shared variable communication, which enables the sharing
of state variables across devices; (iii) a rule-based programming model, in which
programs comprise a set of statements, where each statement is a guarded action
dependent on a Boolean condition; (iv) dynamic binding, which allows for shared
variable communication in the presence of changing wireless connectivity; and
(v) synchronized, network-wide action timing. A preliminary implementation of
a DESAL compiler is presented in [1]. SELFWISE [11] also supports state-based
programming and offers a supporting runtime environment for self-stabilizing
algorithms. However, it lacks support for coordinated, distributed actions, which
is an important feature in many scenarios.

3 DESALβ

DESALβ is a framework for implementing self-stabilizing embedded network
applications. It provides a state-based programming language with support for
C-based constructs, a runtime platform based on TinyOS and a Java user inter-
face used to monitor and debug applications. We adapted the DESAL runtime
to TinyOS 2.1.2, from TinyOS 1.x and replaced the time synchronization module
with the Flooding Time Synchronization Protocol (FTSP) [15] to achieve bet-
ter synchronization performance. DESALβ code is translated to nesC code and
compiled with the supporting runtime libraires. DESALβ adapts the runtime
design described in [1].

New DESALβ language features include: (i) C-based structs to provide flex-
ible data representation; (ii) nesC/C code mixing to accommodate situations
where it is more convenient to use event-based semantics; (iii) multi-hop bind-
ing to enable variable sharing across multiple hops, and to simplify algorithms
implemented based on the notion of a K-neighborhood; and (iv) declarative link
quality guarantees to ensure network robustness.

DESALβ 309

4 Case Study: Spanning Tree

The case study involves creating a routing tree in the network. A key advantage
of DESALβ is that complex logic for message exchange is hidden from the
programmer. The self-stabilizing algorithm developed by Goddard et al. [18] is:

Rule 1:
v.ID = 0 → v.distance

= 0 ∧ v.parent = v;

Rule 2:
v.ID �= 0 ∧ ∃u ∈ N(v) : (u.distance =

minD) → v.distance = minD + 1∧
v.parent = u ∧ v.parentAlive = true;

Rule 3:
v.ID �= 0 ∧ v.parentAlive

= false → v.distance

= ∞ ∧ v.parent = v

where v.distance represents the distance of node v from the root of the tree,
v.parent points to the parent node of v, and minD denotes the current shortest
distance to the root, among all neighbors of a non-root node v. An ID value
of zero is used to represent the root node, while non-zero values represent non-
root nodes. v.parentAlive indicates whether a node’s parent is healthy. Rule 1
is responsible for declaring the root node of the tree. Rule 2 is responsible for
searching for a parent. Rule 3 is responsible for recovering from a parent fault.

1 component spanningTree
2 shared uint16 distance = 255
3 unshared uint16 parent = ID
4 unshared uint16 minD = 254
5 unshared bool parentAlive = false
6 binding uint16 nDistance <-

*.spanningTree.distance[20]
7
8 // non-root node updates its parent
9 every 3\,s after 0s

10 (ID!=0 && parentAlive == false):
11 foreach d in nDistance {
12 if(d<minD){
13 minD = d
14 parent = src(d)
15 parentAlive = true
16 }
17 }
18 distance = minD+1
19 $Leds(distance)
20 []
21 // set root node’s distance
22 ID == 0:
23 distance = 0
24
25 // check parent, recover if parent down
26 every 30\,s after 0s
27 (ID !=0 && parentAlive == true):
28 parentAlive = false
29 foreach d in nDistance {
30 // determine if parent is alive
31 if(parent == src(d)){
32 parentAlive = true
33 }
34 }
35 // if parent down, reset
36 if(parentAlive == false){
37 minD = 254
38 distance = 255
39 parent = ID
40 $Leds(distance)
41 }

Listing 1. Spanning Tree

We translate the above rules to
the DESALβ code shown in Listing 1.
Line 2 shows that each node main-
tains a shared variable distance to
represent its distance from the root.
Initially, each node’s distance is set
to 255, indicating a disconnect from
the tree. On line 3, local variable
parent is similarly initialized to the
host node’s ID. Neighbors’ distance
information can be read from the
multi-binding nDistance. The first
subcomponent, on lines 9–23, imple-
ments rules 1 and 2. Every 3 s, the
foreach loop on lines 11–17 finds
the neighbor offering the shortest dis-
tance to the root. The ID of this node
is acquired by src() and used to
update parent. The parentAlive
flag is set to true, and the host node’s
distance is set to 1 hop greater than
the parent’s distance, minD. The root
node’s distance is set to 0, as shown
on lines 22–23. Rule 3 is implemented
on lines 26–41. The src() function is used to (implicitly) check whether the
parent is still active. It returns the source ID of a binding. If it returns the par-
ent ID in the foreach loop, it implies that the parent is still reachable, and
parentAlive is set to true. When a non-root node detects a failed parent, it
resets its distance (255) and gets ready to rejoin the tree, as shown on lines 9–19.

310 Y. He et al.

The DESALβ source code for the spanning tree algorithm is realized in
only 35 lines of non-whitespace code. The conciseness of DESALβ makes the
implementation of each rule a natural process and requires no understanding of
the underlying nesC facilities.

To validate the application, we performed a simulation in Cooja with 35 ran-
domly located nodes, each running the TinyOS image created from the DESALβ

application. We specified a given node (node 35) to be the root node. Upon sta-
bilization, the network organizes itself into a tree, and the parent of a given node
(node 31) is node 9. Since distance is the only state variable shared within the
network, we inject a parent fault by setting the distance of node 9 to 255. We see
that after the next round of communication, node 31 has been accepted by node
12, its other neighbor, as its new child. This fault is corrected in 9.2 s, which is
approximately the convergence time of the algorithm, as discussed later.

5 Evaluation

5.1 Space Overhead

We compare the space overhead for the spanning tree application using DESALα

and DESALβ . Nescc 1.3.4 [13] is used to collect the memory usage data. The
DESALα program uses 17,516 bytes of ROM, and the DESALβ program uses
24,476 bytes. The difference in ROM usage is mainly due to the introduction
of a more sophisticated time synchronization module. DESALβ uses TinyOS
2.x’s TimeSync library, which introduces 5,128 bytes more ROM overhead than
the TinyOS 1.x module used previously. ROM usage is also increased due to
the new communication stack in TinyOS 2.x. Test results show that TinyOS
2.x introduces 2,768 bytes of ROM overhead when two parameterized AMSend
interfaces are used. Since TinyOS 2.x uses more precise RAM allocation for
timers [23], the RAM usage of the DESALβ program is smaller, at 214 bytes.
Note that RAM is much more scarce than ROM on most embedded network
platforms. Consequently, the decrease in RAM usage by DESALβ , even at the
expense of increased ROM usage, is a significant efficiency improvement.

5.2 Convergence Time

When a fault occurs in a self-stabilizing network, the system eventually converges
to a legitimate state. A key performance measure for self-stabilizing algorithms
is the time taken for convergence. Convergence is defined by a global predicate,
which can often be expressed as a conjunction of local predicates. We measure the
convergence time of the DESALβ application by tracking the local convergence
time of each node. Network convergence time is expressed as the maximum local
convergence time in the network.

To measure convergence time, we used the NESTBed [14], which consists of
80 Tmote Sky nodes arranged in a grid topology, as well as the Cooja simulator.
We first use the testbed to test networks consisting of 20, 40, 50, and 80 nodes.

DESALβ 311

We then use Cooja to test networks of 100, 150, 200, and 250 nodes. In Cooja,
each algorithm is simulated on 3 different topologies in a 100 m*100 m area. A
random topology places the nodes randomly, a grid topology places the nodes
evenly over the region in a matrix format, and an elliptical topology places the
nodes in a circle over the region. Each simulation assumes a Unit Disc Graph
Medium (UDGM), with a 100 % reception rate inside the disc, and 0 % outside.
Collisions occur if two nodes transmit concurrently.

For the Spanning Tree algorithm, the local predicate is (n.parent �= n) ∧
(n.Distance = n.parent.Distance + 1). Figure 1 shows the convergence time of
the algorithm. Figure 1a shows convergence time in terms of rounds, as a function
of network size. Figure 1b shows convergence time in terms of wall clock time,
again as a function of network size. Both metrics grow as expected with increased
size.

Fig. 1. Spanning tree

From Fig. 1, we observe that the ellip-
tical topology has the lowest convergence
time of the three topologies. This is because
this topology results in the least number
of message collisions compared to the other
topologies. Also, as network size increases,
it becomes more difficult for the algorithm
to stabilize. This is because our experi-
ments are performed within a limited area
(100 m*100 m); the probability of message
collision significantly increases as network
density increases. We also tried to enlarge the
network to more than 300 nodes. However,
the simulation became too slow due to the
RAM consumption caused by the increase in
Java threads in the Cooja application.

6 Conclusions

In this paper, we presented DESALβ , a framework for implementing self-
stabilizing embedded network applications. A spanning tree algorithm was used
to demonstrate that using DESALβ to develop self-stabilizing embedded net-
work applications is significantly easier than using event-based programing lan-
guages, such as nesC. However, when it is more convenient to use event-based
semantics, applications can also be written using a mixture of DESALβ and
nesC/C. Experimental results show that the space overhead of DESALβ is
acceptable and convergence time is low.

Acknowledgment. This work is supported by the NSF through award CNS-0746632.

312 Y. He et al.

References

1. Dalton, A.R., et al.: Desalα : an implementation of the dynamic embedded sensor-
actuator language. In: Proceedings of the ICCCN 2008, vol. 8 (2008)

2. Arora, A., et al.: A state-based language for sensor-actuator networks. ACM
SIGBED Rev. 4(3), 25–30 (2007)

3. Hill, J., et al.: System architecture directions for networked sensors. In: Proceedings
of the ASPLOS IX, pp. 93–104 (2000)

4. Dunkels, A., et al.: Contiki - a lightweight and flexible operating system for tiny
networked sensors. In: Proceedings of the LCN 2004, pp. 455–462, November 2004

5. Bhatti, S., et al.: Mantis OS: an embedded multithreaded operating system for
wireless micro sensor platforms. Mob. Netw. Appl. 10(4), 563–579 (2005)

6. Gay, D., et al.: The nesC language: a holistic approach to networked embedded
systems. In: Proceedings of the PLDI 2003, pp. 1–11 (2003)

7. Madden, S.R., et al.: TinyDB: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)

8. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31(3), 9–18 (2002)

9. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor
networks using Kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh,
M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

10. Newton, R., et al.: The regiment macroprogramming system. In: Proceedings of
the IPSN 2007, pp. 489–498. ACM, New York (2007)

11. Weyer, C., Turau, V.: SelfWISE: a framework for developing self-stabilizing algo-
rithms. In: David, K., Geihs, K. (eds.) Kommunikation in Verteilten Systemen
(KiVS), pp. 67–78. Springer, Heidelberg (2009)

12. Osterlind, F., et al.: Cross-level sensor network simulation with COOJA. In: Pro-
ceedings of the LCN 2006, pp. 641–648, November 2006

13. NESCC. linux.die.net/man/1/nescc
14. Dalton, A., et al.: A testbed for visualizing sensornet behavior. In: Proceedings of

the ICCCN 2008, pp. 1–7, August 2008
15. Maróti, M., et al.: The flooding time synchronization protocol. In: Proceedings of

the SenSys 2004, pp. 39–49. ACM (2004)
16. McPeak, S., Necula, G.C.: Elkhound: a fast, practical GLR parser generator. In:

Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 73–88. Springer, Heidelberg
(2004)

17. Hedetniemi, S.M., et al.: Self-stabilizing algorithms for minimal dominating sets
and maximal independent sets. Comput. Math. Appl. 46(5–6), 805–811 (2003)

18. Goddard, W., et al.: Self-stabilizing protocols for maximal matching and maximal
independent sets for ad hoc networks. In: Proceedings of the IPDPS 2003, p. 14.
IEEE (2003)

19. Mahafzah, M.H.: An efficient graph-coloring algorithm for processor allocation.
Int. J. Comput. Inf. Technol. 02(1) (2013)

20. Johnson, D.S., Garey, M.R.: Computers and Intractability. Freeman, New York
(1979)

21. Hedetniemi, S.T., et al.: Linear time self-stabilizaing colorings. Inf. Process. Lett.
87, 251–255 (2003)

22. Moteiv. Tmote sky (2005). http://www.eecs.harvard.edu/∼konrad/projects/
shimmer/references/tmote-sky-datasheet.pdf

23. Levis, P.: Experiences from a decade of tinyos development. In: Proceedings of the
OSDI 2012, pp. 207–220. USENIX, Berkeley (2012)

http://linux.die.net/man/1/nescc
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

	DESAL: A Framework For Implementing Self-stabilizing Embedded Network Applications
	1 Introduction
	2 Related Work
	3 DESAL
	4 Case Study: Spanning Tree
	5 Evaluation
	5.1 Space Overhead
	5.2 Convergence Time

	6 Conclusions
	References

