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Abstract. The Internet-of-Things paradigm shifts the focus of sensor
networks from simple monitoring to more dynamic networking scenarios
where the nodes need to adapt to changing requirements and conditions.
For this purpose many configuration options are added to the network
protocols. Today, however, they can only be modified at compile-time,
which seriously limits the ability to adapt the behaviour of the network.

To overcome this, a solution is proposed that allows reconfiguring the
entire network stack remotely using CoAP. The Contiki implementation
shows that for a small memory overhead (1.2 kB) up to 57 configura-
tion parameters can be reconfigured dynamically. The average latency
for reconfiguring one parameter in a twenty node network is only three
seconds. A simple case-study illustrates how the energy consumption of
an application can be reduced with (50 %) by dynamically fine-tuning
the MAC duty-cycle.

Keywords: Internet-of-things · CoAP · Contiki · Dynamic reconfigu-
ration · Wireless sensor networks · Network management

1 Introduction

The Internet of Things (IoT) philosophy [4] announces the third wave of digi-
talisation. After the rise of the PC (a computer in every home) and the smart-
phone (a mobile computer for every person) also appliances (or things) will be
equipped with a mini-computer and communication interface in the near future.
When connected to the Internet, they become IoT devices and enable to further
digitise certain aspects of modern day society. In first instance, these devices
will automatise or optimise certain processes but there are endless new applica-
tion possibilities in areas such as healthcare, surveillance, agriculture, personal
fitness, home automation and many more.

The vast majority of IoT devices are constrained end-devices (a.k.a. sensors
and actuators) with limited computing power and memory. For these type of
devices, specialized software (e.g. operating systems (OS), network protocols,
etc.) is required. Given the wide range of possible applications and the specific
limitations, much effort was spent by a broad research community to develop
this software. Custom OSs such as Contiki, RIOT and TinyOS were proposed
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 269–281, 2016.

DOI: 10.1007/978-3-319-47075-7 31



270 P. Ruckebusch et al.

that specifically target such devices. Also many standards emerged, providing
answers to the specific challenges posed by these applications and devices.

Despite the societal and business potential, the uptake by industry of innov-
ative large-scale sensor/actuator applications is slow. One of the major hurdles
that retains innovation is the lack of built-in support for maintenance of such
devices. Perhaps the most important aspect in maintainability is the possibility
to dynamically reconfigure the network stack. Although the standards provide
many options to configure network protocols, it is almost impossible to change
the configuration settings at run-time. This implies that the entire network needs
to reconfigured off-line if changes are required. In research this is not a major
problem since experiments can be repeated using different settings. In real-life,
however, application requirements and conditions change continuously. There is
hence a clear need for enabling dynamic reconfiguration of the network protocols
to adapt to changing situations.

In this work a light-weight approach is presented that enables to change
configuration settings in the entire network stack using only a minimal amount
of resources. Moreover, the presented solution is able to expose the configuration
settings both locally, for a local controller, and remotely, for a network-wide
controller. The core of the solution is completely agnostic to the access method
(e.g. local or remote). The communication protocol for enabling remote access is
also transparent. The proof-of-concept was implemented in Contiki and uses the
REST-based ERBIUM Constrained Application Protocol (CoAP) supported by
Contiki.

2 Background

This section gives an overview of the relevant protocol standards and operating
systems targeted by the proposed control extensions. For each standard also the
possible configuration settings, as described in the standard, are explored. Note
that currently they can only be modified at compile time in the targeted OSs.

2.1 Operating Systems

TinyOS, RIOT and Contiki are operating systems specifically designed for con-
strained sensor devices in the IoT. They share three common features [3]: (1)
platform and hardware abstraction for portability; (2) multi-tasking or multi-
threading support; and (3) lightweight IPv6 compliant network stack.

Although these OSs also provide alternative network stacks, the IPv6 stack is
chosen as default. This is because there is a continuous push towards standard-
ization within the IoT ecosystem. Therefore, the protocols included in the default
IPv6 stack are selected as primary candidates for the dynamic reconfiguration
extensions.

The default IPv6-compliant network stack is illustrated on the left side (a)
in Fig. 1. The following protocols and standards are included: an IEEE-802.15.4-
2006 compliant PHY and MAC, 6LowPan header compression, IPv6 (addressing,
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Fig. 1. (A) IPv6 compliant network stack available in TinyOS, Contiki and RIOT. (B)
possible configuration parameters to fine-tune the RPL routing protocol.

headers and ICMP), Routing Protocol for Low-Power and Lossy Networks (RPL)
routing, TCP/UDP transport and CoAP.

2.2 Network Protocols and Standards

This section briefly summarizes the main configuration settings in the standard
IPv6 stack [13]. In total there are 57 available parameters. The possible configu-
ration settings for the RPL routing protocol are illustrated, as example, on the
right side (b) of Fig. 1.

The PHY and MAC protocols are based on the IEEE-802.15.4 standard
[6]. PHY settings include channel, tx power and CCA threshold. Many custom
implementations of MAC protocols exist. In Contiki, the default radio duty
cycling MAC protocol is ContikiMAC [2]. It uses periodical wake-ups to listen
for packet transmissions from neighbours. The wake-up interval can be modified
as well as the number of listens (i.e. CCA checks) during each periodical wake-up
or before packet transmission. On top of ContikiMAC, a CSMA based protocol
controls the medium contention and packet retransmissions which can also be
configured. Protocols with similar behaviour are also available in TinyOS and
RIOT.

The network layer includes RPL [14], a proactive, distance-vector routing
protocol specifically designed for Wireless Sensor Networks (WSN)s. RPL uses
control packets (DIO, DAO and DIS) for building a tree like topology, called a
Destination-Oriented Directed Acyclic Graph (DODAG). Many settings allow to
fine-tune the various intervals that are used for maintaining the DODAG. Also
the link estimation algorithms can be changed and configured. Next to RPL,
various parameters controlling the IPv6 neighbour discovery [11] process can be
configured. Also TCP/UDP implementations allow to configure the number of
retransmissions and various time-out settings.
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The application layer protocols tailored for WSNs focus mainly on integrat-
ing the sensing and actuating applications in the IoT. One of the most prominent
examples is CoAP [12], a REST based protocol that runs over UDP and allows
to define resources (e.g. sensors and/or actuators) which can be retrieved or
changed using GET/POST/PUT methods using a response-request approach.
CoAP can be easily integrated in web-based applications and has a limited over-
head. The number of retransmissions and various time-outs and intervals used by
the CoAP engine can be configured. Alternatives [10] for CoAP are MQTT and
AMQP, both run over TCP and use a publish-subscriber approach managed by
a message broker that allows nodes to publish and/or subscribe to topics. Com-
pared to COAP they have a higher overhead and are less supported by operating
systems for WSNs.

3 Design

This section discusses the design of the extensions required to support dynamic
reconfiguration. First the requirements will be summarized, then the high-
level architecture will be described and, subsequently, the communication flow.
Finally, the most appropriate application layer protocol will be chosen.

3.1 Requirements

From a functional viewpoint the main requirement is to enable updating
configuration parameters of network protocols after deploying the network. This
functionality must be use-able by both a node-local and network-wide control
engine.

In order to support remote control, the system must allow automatic para-
meter discovery and bootstrapping in the entire network. Moreover, batch con-
figuration is required for enabling to change multiple parameters at once. From
a user perspective, it must be possible to reconfigure the network via web-based
applications.

From a non-functional viewpoint the main requirements is resource effi-
ciency. The memory, CPU and network overhead must be as small as possible
and scale with the number of parameters that can be changed at run-time.

Other important concerns are modifiability, portability and compatibility. To
address them, the control engine must be (a) independent of the protocol used
for providing remote access; (b) easily ported to existing operating systems; and
(c) compatible with web-based applications.

From the aforementioned requirements, it can be deducted that a generic
method for accessing configuration settings is required both on the node-local
and network-wide level. For this purpose parameters are maintained in a reposi-
tory and can be reconfigured using a generic interface implemented by a control
engine. Different application layer protocols can be used for enabling remote
access.
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3.2 Architecture

Figure 2 illustrates the high-level design of the architecture. It includes the fol-
lowing entities: (a) a sensor configuration server, which offers a control API or
UI for external users (human or software); (b) a sensor gateway server that
maintains a network-wide view on the current configuration settings and acts
as a border router for the WSN; and (c) the actual sensor devices that can be
reconfigured.

Fig. 2. The architecture of the reconfiguration system.

The sensor devices implement a local parameter repository, which maintains a
local view on the current node configuration settings, and a local control engine
implementing a remote configuration interface
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The local control engine is responsible for (a) making parameters discover-
able and participating in the bootstrapping phase; (b) implementing a generic
interface that allows to get/set a specific parameter or a group of parameters;
and (c) parsing remote configuration messages and performing the necessary
interface calls for the get or set operation. To enable all these interactions, the
local parameter repository stores references to each parameter. This reference
contains function pointers to the getters and setters provided by the different
protocols.

The sensor gateway server includes a sensor border router that acts as a
gateway for the sensor network. The Linux host further implements a network
parameter repository, which maintains a network-wide view on the current con-
figuration of each node, and a network control engine implementing a remote
configuration interface.

The network-wide control engine is responsible for (a) device discovery and
bootstrapping; (b) enabling remote access to the configuration parameters; (c)
performing batch configurations in a transactional manner; (d) translating mes-
sages between the local sensor network and the remote control API; (e) input
validation when changing settings; and (f) authenticating remote access. The
network parameter repository serves as a cache during get operations and facil-
itates roll-backs during set operations.

The sensor configuration server serves as a single entry point for reconfigur-
ing the network both for humans (UI) and software processes (API). It consists
of a single component, the control API/UI implementing an easy to use API
and UI. This component is responsible for translating the API/UI calls into
configuration messages and parsing the result.

3.3 Communication Flow

Figure 3 illustrates an example communication flow between the different entities
in the architecture, the active components are depicted using white boxes and
bold text. In this example HTTP is used by the Control API to configure sensor
j. For this purposes, the network control engine translates the HTTP requests/
responses into CoAP requests/responses and vice-versa. Another possibility is to
directly use CoAP in the Control API. The network control engine will then serve
as a proxy for delegating COAP requests/responses. The intermediate sensor
nodes (e.g. border router and node i) do not process the CoAP message but
forward it to the destination using RPL. Packets coming from the sensor network
are injected directly in the Linux IPv6 stack by the border router.

3.4 Application Layer Protocol

Selecting the appropriate application layer protocol for exchanging configuration
messages across the network is very important because this will have a high
impact on the resource efficiency of the overall solution. Several candidates were
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Fig. 3. The communication flow between the different entities in the architecture. The
white boxes with bold text depict the active components in this example.

compared in [7] and evaluated based on the device memory requirements and
message size overhead.

The most dominant application layer protocol for constrained IoT devices
today is CoAP. It has built-in support for resource (e.g. parameter) discovery
and block wise (e.g. batch configuration) transfers. From a functional viewpoint,
all required features are present. Since CoAP is tailored for constrained devices,
the memory and CPU requirements are limited. Moreover, the message overhead
is also minimal because the CoAP header is very small and UDP is used as
transport protocol. With portability and compatibility in mind, CoAP is also a
logical choice because it is well supported by nearly all OSs and easily integrate-
able in web-based systems since it is REST based.

An alternative for CoAP is MQTT [5], a publish-subscriber system with a
central MQTT broker that runs over TCP. MQTT clients can publish or sub-
scribe to topics (e.g. parameters). For each parameter, two topics are required:
(1) one published by the sensor node for supporting the get operation; and
(2) one published by the configuration server for supporting the set operation.
Because of this, MQTT will have a much higher device memory overhead. Also
the message overhead will be bigger since it runs over TCP. Moreover, it is less
supported, only a Contiki implementation is available. Other alternatives are
AMQP and XMPP. Both also use TCP as transport protocol and have much
higher device memory requirement and message overhead since they are not
tailored for constrained devices.

To conclude, CoAP is the most appropriate application layer protocol to sup-
port dynamic reconfiguration, as also indicated in [13].
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4 Evaluation

The evaluation consists of an analytical part, that investigates how CoAP can
be most efficiently used for enabling remote access to configuration parameters,
and an experimental part, in which the memory overhead and latency for chang-
ing parameters are determined. Also a proof-of-concept case study is presented
emphasizing the practical use of the dynamic reconfiguration solution.

4.1 Analysing CoAP Memory Overhead

The CoAP memory requirements constitute of the fixed overhead for the CoAP
engine (8.5 kB ROM/1.5 kB RAM [8]) and the variable amount of ROM occupied
by the CoAP resources. The additional memory overhead for exposing configura-
tion settings hence depends on the number of CoAP resources required to expose
the parameters. Three granularity levels are considered: (1) a CoAP resource per
configuration parameter; (2) a CoAP resource per protocol; and (3) one CoAP
resource for the entire network stack.

In principal, CoAP is text based and resources are identified using unique
string names encoded in the resource URI. Both need to be stored in the ROM
memory of each sensor device. Depending on the granularity level, the string
name of each parameter (1), protocol (2) or stack (3) is stored in memory causing
extra ROM overhead. Moreover, when using granularity level (2) or (3), para-
meters still need to be identified. This can be done using either unique names,
encoded in the URI query variable, or unique IDs, encoded in the payload.

In order to make well-founded decisions, the impact on the ROM memory
usage for different granularities was analysed using stub resources in Contiki for
CoAP. This allows to devise a mathematical model that can be applied on a real
example network stack to estimate the overhead in each options. The total ROM
overhead of an option is denoted by stotalrom and comprises of Sres

rom, or the ROM
required for the resource definition and the GET/POST/PUT handlers, and the
string length of the resource name. Note that Sres

rom will be different for each
granularity because the GET/POST/PUT handlers are implemented differently

Also the parameter identification method in level (2) and (3) were investi-
gated. For this purpose the auxiliary function sidrom(parami) is defined (Eq. 1)
that returns the string len when using unique names or sizeof(int) when using
unique IDs.

sidrom(parami) =

{
string len(parami) if id is string
sizeof(integer) if id is integer

(1)

A resource per parameter enables direct addressing of parameters without
requiring any transformation. It is the most straightforward for integration in
browsers using add-ons such as Copper [9]. The ROM overhead stotalrom , on the
other hand, will be high because for each parameter the string name must be
stored and a resource must be defined (Sres

rom) as denoted in Eq. 2.
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stotalrom =
parami∑

(string len(parami) + Sres
rom) (2)

where Sres
rom = 157

A resource per protocol groups parameters on a protocol level. They are
addresses indirectly via the protocol resource implying that an if-else structure is
required in the GET/POST/PUT handlers for identifying the correct parameter.
Equation 3 defines the total ROM overhead stotalrom as the sum over all protoi of the
ROM memory required for storing the protocol name, the fixed CoAP resource
overhead (Sres

rom) and, per parameter, the identification (sidrom(paramj)) and if-
else (Sifelse

rom ) overhead.

stotalrom =
protoi∑

(Sres
rom + string length(protoi) + sparamrom (paramj ∈ protoi)) (3a)

sparamrom (paramj ∈ protoi) =
paramj∑ (

sidrom(paramj) + Sifelse
rom

)
(3b)

where Sres
rom = 280 and Sifelse

rom = 40

A resource for the entire stack has the advantage that there is looser cou-
pling with the protocols, compared to the previous options. A tight coupling
implies that a protocol update also require updating the CoAP resources(s).
The third approach, however, requires an explicit implementation of a parameter
repository that can be used by the generic resource to manipulate configuration
settings and by the protocols to (de-)register parameters. Equation (4) expresses
the ROM overhead stotalrom when using a single resource for the entire stack. Now
the fixed CoAP resource overhead (Sres

rom) also includes the resource name and
the parameter repository implementation. For each parameter, a fixed amount of
ROM Sparam

rom is required for the parameter structure. The identification overhead
sidrom(parami) depends on the chosen method.

stotalrom = Sres
rom +

parami∑ (
sidrom(parami) + Sparam

rom

)
) (4a)

sidrom(parami) =

{
name length(parami) if id is string
2 if id is numeric

(4b)

where Sres
rom = 392 and Sparam

rom = 12

Conclusion: Figure 4 gives an overview of the ROM overhead estimated for the
different resource granularities and identification methods. The results clearly
show that a single generic resource requires 80 % less memory (1.2 kB) compared
to a resource per parameter (11.6 kB) and 60 % less compared to a resource per
protocol (4.5 kB). Using unique IDs instead of names also has a major impact.
Given the size in ROM of the default Contiki IPv6 stack (+ − 30 kB), using a
single generic CoAP resource and unique IDs is the preferred choice.
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Fig. 4. Estimated ROM overhead for different resource granularities and identification
methods.

4.2 Experimental Evaluation

Evaluation Set-Up: The sensor configuration and gateway server were imple-
mented on a general purpose embedded PC running Linux. The sensor code
was developed in Contiki 3.0 and executed on a Zolertia Z1 (16 MHz CPU,
92 KB ROM, 10 KB RAM and an IEEE-802.15.4 compliant transceiver). A sin-
gle resource combined with a parameter repository is used for configuring the
network stack. All communication between the different entities is CoAP based.
On Linux libCoAP [1] is used while in Contiki the ERBIUM CoAP [8] engine is
utilized.

Latency: The average latency for changing parameters depends on the number
of PUT/POST requests needed to perform a batch configuration on all nodes.
It is measured on the sensor gateway by calculating the delay between the first
request and last response. The average latency is an important performance
indicator because it defines the duration in which the network is in an inconsis-
tent state. Figure 5 illustrates the average latency in seconds for one to twenty
POST/PUT requests (e.g. number of nodes) in steps of four. Also the standard
deviation over all experiments is indicated. The results clearly show that the
average latency scales with the number of POST/PUT requests.

Case Study: Dynamically Reconfiguring the ContikiMAC Duty-Cycle:
To illustrate the usefulness of dynamic reconfiguration, a simple case study is
presented in which the duty-cycle of ContikiMAC is dynamically adapted based
on the application load. It is applicable on use-cases such as a HVAC monitoring
and control system which requires more traffic during the office hours. The duty-
cycle of ContikiMAC [2], normally statically defined at compile time, is now
dynamically configured using the ChannelCheckRate (CCR) parameter (e.g.
the rate for checking RX activity). Figure 6 shows the energy consumed daily
by the radio (RX/TX) and CPU (active/LPM) for three different CCR settings.
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Fig. 5. Average latency for increasing number of POST/PUT requests (e.g. nodes).
Also the standard deviation is denoted on the chart.

Fig. 6. The daily energy consumption for different settings of the channel check rate
(CCR) in ContikiMAC.

A high duty-cyle (left) results in a high reliability at the cost of much energy
spent in RX mode. On the other hand a low duty cycle (right) requires ten times
less energy at the expense of reliability. When using a high-duty cycle during
office hours and a low duty-cycle otherwise (middle), a high reliability can be
achieved for half the amount of energy. The energy was mea

5 Conclusions

This paper presents a flexible approach for enabling dynamic reconfiguration of
protocol settings in the entire network stack, either local or remote. The high
level architecture is applicable on multiple OSs and compatible with different
application layer protocols for providing remote access to the devices. The Con-
tiki implementation uses CoAP for this purpose. A single CoAP resource is
defined for the entire network stack combined with a parameter repository that
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allows protocols to register parameters. A configuration server can reconfigure
the entire network using CoAP via the gateway server that acts as a CoAP
proxy.

By carefully considering how CoAP is used, the overall memory overhead
could be reduced from 11.6 kB to 1.2 kB. The proof-of-concept results also
show that the latency for reconfiguring parameters scales with the number of
POST/PUT requests (e.g. the number of nodes). To reconfigure a parameter
in a network of twenty nodes, on average three seconds are required. The case-
study that dynamically reconfigures the duty-cycle of ContikiMAC based on the
traffic load, shows that 50 % of energy can be saved without sacrificing other
performance indicators such as reliability and throughput.

Future work could built-up from this solution and develop more advanced
case-studies where the effect of changing multiple parameters on the network
performance can be investigated. To allow this, only limited modifications are
required in the protocols to expose the parameters. The developed solution can
hence be used by many experimenters for optimizing the network performance
via parameter reconfiguration.
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