
Lightweight Device Task Actuation Framework
as IoT Test Platform

Dhiman Chattopadhyay(B), Abinash Samantaray, and Hari Raghav

Innovation Lab, Tata Consultancy Services, Kolkata, India
{dhiman.chattopadhyay,abinash.samantaray,hariraghav.1}@tcs.com

Abstract. Popular test automation frameworks target the enterprise
application testing but there is scarcity of test automation framework
for device applications, especially for IoT domain. IoT testing para-
digm throws a new set of challenges involving device integration, proto-
col adapters, task actuation, data integrity, security and non functional
requirements. In this paper, we propose a scalable, lightweight device
task actuation framework for IoT testing based on TCS Connected Uni-
verse Platform Device Management enabler. This framework can execute
test suite on multiple remote devices spread across geographies and then
show the results on the IoT tester’s screen. Moreover it has the ability
to gather runtime device statistics during test execution, thus can do
dynamic health check for IoT devices deployed on field.

Keywords: TCUP · DM · DTAF · ITP · LWM2M · CoAP · REST ·
IoT

1 Introduction

The important consideration in case of a software testing are safety, reliability,
resilience, availability and security. Legacy Test Automation frameworks [1,2] are
web based tool to execute test suite without manual intervention and monitoring.
There are tools [3] to automate enterprise application testing where applications
deal with predominantly human generated data. Such tools deal with UI testing
and as well as functional testing of enterprise application with predefined set
of inputs and arrive at pass fail decision in comparison with reference results.
With the arrival of era of Internet of Things (IoT) devices are set to take the
driver seat in terms of data generation, acquisition, transfer and task actuation.
IoT solution testing involves validation of functionality, security, actuation and
benchmarking for testing the reliability, security, stability and performance of
IoT solution. The IoT devices vary in hardware type ranging from constrained
embedded microcontrollers like Arduino and mbed platform to more resource-
ful gateways like RaspberryPi, Intel Galileo, Edison, Beagle Bone etc. and even
smart-phones can act as a gateway. But the commonality among the edge devices
is the ability to acquire, communicate and compute. As the importance of device
application is paramount in IoT application it has become necessary to rigor-
ously test the device applications before field deployment. There are popular
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.): IoT 360◦ 2015, Part II, LNICST 170, pp. 20–27, 2016.

DOI: 10.1007/978-3-319-47075-7 3



Lightweight DTAF as ITP 21

commercial and open source test automation tools like Winrunner, Selenium
widely used in web application test automation. But there is a void in the avail-
ability of test automation framework for IoT applications dealing with machine
generated data and task actuation. There are popular mobile test automation
framework like Sikuli, Robot, Monkeyrunner for mobile app testing but those are
not portable on constrained devices for IoT application testing. The reason of
unavailability of such test automation support in IoT domain is due to resource
constraints of the device under test (DUT) as aforesaid tools use resource hun-
gry protocols requiring large amount of resources like CPU, memory, power and
bandwidth. Presently the testing of device applications is done at a central site
before field deployment. Engineers execute the test suite and collect the results
from tests running on individual devices. Manual testing of device application
involves tedious manual intervention and constant monitoring.

2 TCUP Overview

TCS Connected Universe Platform (TCUP) [4,5] is an IoT PAAS offering that
includes Device Management (DM), Message Router service, Sensor observation
service (SOS), Data Analytics service and Complex Event Processing service.
TCUP is a cloud based multitenant Platform-as-a-Service (PaaS) offering that
makes it easy to develop, deploy and administer M2M or IoT applications. TCUP
consists of a set of RESTful modules exposing web services, device agents and
web portal that are specifically designed for application developers to create
highly scalable and intelligent analytics driven applications that make use of
sensors and devices. TCUP can be hosted on private cloud like Openstack or
public cloud like AWS or Azure. Figure 1 depicts a high level overview of TCUP.
TCUP also serves as a horizontal IoT application management platform where
vertical domain specific services can be hosted with which corresponding device
agents can interact, generated events can be stored, analyzed and finally some
action can be triggered based on the application decision logic.

Fig. 1. TCUP modular overview



22 D. Chattopadhyay et al.

3 Device Management Concept

TCUP platform has a Device Management (DM) module which allows remote
monitoring of devices and sensors, monitor health and connectivity status of
devices, observe devices and their resources send commands to devices. TCUP
supports the OMA LightweightM2M(LWM2M) standard [6] which uses underly-
ing protocol CoAP [7]. The choice of CoAP over HTTP in IoT is gaining impetus
as it is less resource hungry in terms of CPU load, memory footprint and band-
width usage and energy consumption [8]. LWM2M follows Client-Server archi-
tecture where the Device hosts the LWM2M client and the DM server hosts the
LWM2M server. LWM2M uses the Constrained Application Protocol (CoAP)
with UDP bindings for transport. Each property of a device is modeled as a
CoAP resources and similar resources are clubbed under one LWM2M objects
for logical grouping. For e.g. location related resources like latitude, longitude
and altitude resources are grouped together under location object.Multiple DM
clients’ resources form a hierarchic tree at DM server side and DM Server can
access each device through CoAP resources URIs. DM server maintains the
mapping between device endpoints and their IP along with their correspond-
ing resource sub-tree structure and IP gets updated during periodic registra-
tion update by devices. LWM2M protocol stack with CoAP-HTTP bidirectional
proxy forms the core engine of DM module. The DM service layer atop provides
a RESTful interface which can be consumed by DM portal or other third party
application. Following Fig. 2 depicts an high level architecture of DM service
module. The notifications on any observable resources are automatically posted
by DM agents to DM server. The observed data may be consumed by any appli-
cation through Message Router (MR) module like posting the observation data
to TCUP Sensor Data Management module. For scalability and high availabil-
ity server clusters can be formed with UDP load-balancer for LWM2M core and
HTTP load-balancer for DM service.

Fig. 2. TCUP DM service high level architecture



Lightweight DTAF as ITP 23

Access control list (ACL) defines permissible operation on a resource. API
gateway authorise and authicates every call based API key passed with service
call. Device data is stored in a NoSQL database (HBase). Every device resource
is either static (like make, IMEI etc.), dynamic (like sensor value, CPU load etc.)
or editable (like device description). If DM resource is observable then events
for that observable resource can be subscribed by DM user through RESTful
interface of DM service in order to receive automatic notification if there is any
change in the resource value. This feature is useful to get automatic notification
every time a sensor value changes or some events occur.

4 Device Task Actuation Framework High Level
Overview

TCUP Device Task Actuation Framework (DTAF) as IoT Test Platform (ITP)
is a cloud based solution on TCUP PAAS offering which facilitates the tester to
remotely execute IoT test applications on multiple devices and get the results.
ITP also enables the tester to view runtime device data varying CPU load or
RAM usage and as well as sensor values during test execution. In case of DTAF
device agent runs on DUT and works as test controller. High level overview
of lightweight device test automation framework is shown in Fig. 3. Tester can
launch test applications on remote DUTs from any device and get test results
after test completion.

Fig. 3. Device task actuation framework overview

The device agent is modeled as a group of RESTful CoAP resources which
represent static or dynamic device parameters, configurations and actions. First
device needs to commission itself with TCUP DM server which is initiated by
the DM agent registration with DM server, henceforth device can be managed
through TCUP. Java implementation of device agent architecture is shown in the
Fig. 4. DM agent includes CoAP resource class for every resource where every
individual resources can have GET and PUT handlers depending on read/write



24 D. Chattopadhyay et al.

Fig. 4. Device agent highlevel architecture

access control list. Protocol adapters enable agent to communicate with sensors
over various protocols. The sensory resources also invokes OS specific sensor
interface API to acquire sensor data. Test launcher is defined as a CoAP resource
in DM agent with CoAP GET/PUT handlers which serves test launching request
coming from the DM server end.

4.1 Test Execution Process in DTAF ITP

As tester fires a test from portal the DM Server (DMS) gets test command
through DM Rest API call from test portal, a consumer of DM services. DM ser-
vice translates command from Http to CoAP and send that to DMC over CoAP
protocol. DMC works as test controller and has a resource “launcher” with GET
PUT handlers. Receiving test command launcher’s PUT handler invokes a call-
back that autheticates the command and then fires the specific preinstalled test
application on device. Then test application gets test parameters from DMC and
performs execution accordingly. Now Device agent can get runtime data from
test application over any inter process communication (IPC) mechanism avail-
able for DUT’s OS like a domain socket in Linux or an intent broadcast receiver
mechanism in Android. During test execution user can opt for subscribing run-
time data from DUT through portal and can view the runtime device parameters
along with sensor data on TCUP Sensor Data Explorer (SDE), a HTML5 based
visualizer. DMC sends test result to DMS over CoAP and DMS does the CoAP
to HTTP translation and sends to portal over HTTP. Then portal shows the
result. The interaction between different modules of DTAF is explained with a
Fig. 5a.

Device agent accepts commands from DMS, controls test execution, gathers
dynamic device data, aggregates generated result and send back the result to
DMS. If test nature requires a pass-fail decision then generated result is com-
pared against stored golden reference either at device side or at server side.
Transfer of result set at server for comparison involves more bandwidth usage
whereas comparison at device side loads device computation resource. So the
choice of place of decision making requires a trade off between device hard-
ware capacity and bandwidth availability. Following sequence diagram in Fig. 5b
depicts the aforesaid message flow between DTAF entities.



Lightweight DTAF as ITP 25

Fig. 5. DTAF message flow

5 Prototype Implementation and Results

Tester first runs device agent i.e. DM client (DMC) on Device under test (DUT)
and registers it in TCUP. He logs into ITP portal to see list of DUTs registered by
him and he selects a particular device and view the details of the selected device.
As the tester clicks on the launch button against test name from action tab test
starts running on the DUT. The result button and launch button will be disabled
during test execution. During execution a tester can opt to see dynamic resources
(like sensor)on a live graph on SDE by subscribing the resource through portal,
live graph runs until tester opts out by unsubscribing the resource. Once the test
is finished the test result can be seen by clicking on result button against the test.
Figure 6a shows a screenshot of a test result by running a sample benchmark test
on device while Fig. 6 shows live graph in TCUT DTAF ITP portal. This sample
test is based on open source benchmark algorithm like Wheatstone, Dhrystone,
Linpack etc.

Fig. 6. Screenshots from ITP prototype



26 D. Chattopadhyay et al.

Fig. 7. Bandwidth savings

5.1 Bandwidth Usage and Performance Measurement

Less bandwidth is used by CoAP based DTAF framework against a HTTP based
mobile test automation framework. Average bandwidth usage by DTAF over 100
iterations shows the improvement in bandwidth consumption in Fig. 7. Although
bandwidth is getting cheaper with time, the traffic reduction continues to be an
important consideration due to huge number of devices. From results it is evident
that CoAP payload uses hundred times less bandwidth than HTTP to transmit
the same information.

We have measured performance of our test automation framework through
load testing using Apache JMeter. The performance test setup comprised of
the following hardware configuration: 1. Phoenix 4.2.2 plus HBASE 0.98 cluster
running on HDFS with 1 zookeper, 1 hbase master and 3 region servers, all with
1 core, 2 GB RAM Ubuntu VMs on Openstack cloud 2. DM Service, developed
using Spring v4, running on Apache Tomcat 7.47 on a Intel Core i5, 4 GB RAM
machine with 32 bit Windows 7. DM Server is allocated 268MB of Memory. 3.
Internet Connectivity with 100 Mbps backbone for server and 3G for devices The
result is given below in Table 1.

Table 1. Performance measurement: concurrent request/second

Throughput per sec 100 500 1000

Query result (GET) 45 43 42

Launch application (PUT) 87 85 83

Study of results reveals that the performance in launching test is better
than querying the result. The reason is launching application involves passing
on a JSON payload comprising of test name and parameters whereas result
query returns a large payload which internally gets sliced into multiple chunks
handled by CoAP block mode transfer protocol. Also DM’s underlying database
is HBase where read has more latency than write operation [9]. It is evident



Lightweight DTAF as ITP 27

from result that throughput remains nearly constant despite increasing number
of concurrent request handled by DM server, so the complexity of test launching
is O(1) independent of individual test application’s complexity. This behaviours
is expected as one TCUP DM server has capacity to handle 10000 request per
second, although performance measurement with further increase in load is a
subject of our future scope of work. To serve load more than 10000 request per
second would require server cluster with load balancer.

6 Conclusion

DTAF based ITP uses Lightweight M2M protocol to make this framework a
suitable candidate for IoT device application test automation. The runtime data
collection feature during execution enables hardware behaviour test for sensor
intensive gaming consoles. ITP can be utilized to run resident device health check
and security verification script during device idle time. The device task actuation
framework can be leveraged to design smart home or smart automative solution
[10]. For e.g. this framework can be used for contextual actuation of a remote
media controller to control a home entertainment device. Controlling of device
side actuation poses a new security threat that generates the need of lightweight
authentication and authorization of device commands which will be our new
area of research.

References

1. Wang, F., Du, W.: A test automation framework based on WEB. In: 2012
IEEE/ACIS 11th International Conference on Computer and Information Science
(ICIS), pp. 683–687, 30 May 2012–1 June 2012

2. Fu, L.L., Dai, J.Q., Liu, J.H.: Auto test solution for web application. Inf. Techonl.
4(39), 23 (2010)

3. Wu, Y.: Automation testing framework for web base on web base on selenium. Inf.
Techonl. 9, 187–188 (2011)

4. Misra, P., et al.: A computing platform for development and deployment of sensor
data based applications and services. Patent No. WO2013072925 A2

5. http://www.tcs.com/SiteCollectionDocuments/Brochures/Innovation-Brochure-TC
S-Connected-Universe-Platform-1014-1.pdf

6. http://technical.openmobilealliance.org/Technical/technical-information/release-pr
ogram/current-releases/oma-lightweightm2m-v1-0

7. Shelby, Z.: Constrained Application Protocol (CoAP) RFC6690. http://tools.ietf.
org/html/rfc6690z

8. Sammarco, C., Iera, A.: Improving service management in the internet of things.
MDPI Sens. 12(9), 11888–11909 (2012)

9. http://planetcassandra.org/nosql-performance-benchmarks
10. Ghose, A., et al.: Internet of Things application development. Patent No.

EP2806356 A1

http://www.tcs.com/SiteCollectionDocuments/Brochures/Innovation-Brochure-TCS-Connected-Universe-Platform-1014-1.pdf
http://www.tcs.com/SiteCollectionDocuments/Brochures/Innovation-Brochure-TCS-Connected-Universe-Platform-1014-1.pdf
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://tools.ietf.org/html/rfc6690z
http://tools.ietf.org/html/rfc6690z
http://planetcassandra.org/nosql-performance-benchmarks

	Lightweight Device Task Actuation Framework as IoT Test Platform
	1 Introduction
	2 TCUP Overview
	3 Device Management Concept
	4 Device Task Actuation Framework High Level Overview
	4.1 Test Execution Process in DTAF ITP

	5 Prototype Implementation and Results
	5.1 Bandwidth Usage and Performance Measurement

	6 Conclusion
	References


