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Abstract. In this paper, we describe an approach to fabricating conductive
textiles with temperature sensing capability. The key point of our approach is in
combining electronic properties of a molecular organic semiconductor with
clothing. A polycarbonate film covered with organic molecular semiconductor
was used as the temperature measurement element. To minimize the electrical
response of the developed bi layer thermistor to deformations, the thermistor
was attached to a rigid film-like platform specifically fabricated in the textile by
its local melting. Our study shows that the developed platform enables engi-
neering of the conductive fabric the electrical resistance of which exclusively
responded to temperature changes. Such e-textiles may be easily prepared using
a simple fabrication procedure and, therefore, they are compatible with con-
ductive sensing fabrics prepared by printing techniques. The developed organic
thermistor, being cheap, lightweight and biocompatible, is highly attractive for
applications in wearable biomedical technology.

Keywords: E-textile � Bi layer sensing systems � Thermistors � Sensors for
wearable technologies

1 Introduction

Temperature, deformation and pressure are among the crucial parameters to be mea-
sured in a number of sensing applications [1, 2] using the state-of-the-art sensing
technologies, e.g. wireless sensor network (WSN) [3], wearable technology [4],
e-textile [9]. Indeed, healthcare, environment control, biomedical applications call for
low cost, lightweight thermistors and piezoresitors which are able to accurately mea-
sure temperature and pressure changes [5–10].
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With the emergence of above mentioned monitoring techniques the sensing tech-
nology on plastic substrates has become of especial research interest. It is expected that
this technology will build up sensors introduced to new settings by significantly
reducing their production cost and by adding new functionalities [5].

As the world population is ageing [11], the need in controlling the personal health
status at and out-of home has been constantly increased. In this regard, there is also a
particular interest in integrating lightweight conductive sensing materials in human
wearable interfaces, such as fabrics, since wearable electronics could offer personalized
healthcare, security and comfort [6, 8, 9]. These fabrics are able to sense and react to
environmental conditions.

In this work, we present and discuss a new fabricating approach to processing the
BL film-like thermistor into polyester textile which enables engineering of e-textiles
being capable of controlling very small temperature changes with accuracy of 0.005
degree.

The paper is organized as follows: Sect. 2 will discuss related work in the field.
Section 3 presents our approach and experimental results. Finally, we discuss our
future work and provide conclusions in Sects. 4 and 5, respectively.

2 Related Work

The fabric-based sensing is a large field of research in the biomedicine. As M. Stoppa
and A. Chiolerio have pointed in their recent review on e-textiles [9] the fabric sensors
may be used for electrocardiogram (ECG) [9], electromyography (EMG) [12], and
electroencephalography (EEG) [13, 14] sensing. Modern technologies developing for
the sport, military and aerospace also call for sensing e-textiles. Many sensors and
actuators have been developed, which are imparted to the fabric during finishing [5–8].
As measured elements they mainly utilize thin metallic wires being embedded in a
fabric [9]. Electrically conductive fibers can also be prepared by coating the fibers with
metals, galvanic substances or metallic salts. To fabricate electrically conductive tex-
tiles, the surface of a textile may also be coated with a thin layer of either metal or
semiconductor. Developing metalized plastics [15] and conductive polymers [16]
opens new opportunities for engineering e-textiles: coating textiles with conductive
sensing plastics. It should be noted, however, that the major problems of metalized
plastics are (i) poor adhesion of conventional metals to polymers that are chemical
inertness [17, 18], (ii) significant difference in the Young’s modules between soft
plastics and rigid inorganic metals. These disadvantages result in low binding between
the metallic and plastic layers [17, 18]. On the other hand, conducting polymers are not
stable materials: their electronic properties are often unstable towards atmospheric
moisture [19]. There are also others barriers to their applications, such as the high
manufacturing costs, material inconsistencies, and poor solubility in solvents. In this
context, one of the aims of our research was developing of the stable, flexible, com-
posite materials that may be used as low cost, lightweight, conductive sensing com-
ponents for their applications in wearable biomedical technology. We have recently
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developed an original approach to engineering such sensing materials which lies
in preparing bi layer (BL) films polycarbonate/(001) oriented organic molecular
conductor (BEDT-TTF)2X, were BEDT-TTF = bis(ethylenedithio)tetrathiafulvalen
(Fig. 1) and “X” is trihalide ions [20, 21].

These conductors are charge transfer salts with a 1/2 filled conducting band; they
have very deformable layered crystal structures with strong electron–phonon coupling
and due to this they demonstrate unique electronic properties that may be exploited in
numerous sensing applications [22–24]. It has already been demonstrated that such BL
films show a high piezo-resistive effect and could be successfully embedded in textiles
as either strain or pressure sensors [25]. This result prompted us to apply the
BEDT-TTF-based conductors to engineering conductive fabric whose resistance will
be able to respond to small temperature changes.

3 Results and Discussion

The development of e-textiles at its first phase is reduced to engineering of sensing
materials with electrical detection principle. It should be noted that modern wearable
technologies are ideally suited for the electrical detection. In the second phase, it is to
be considered how the developed sensing materials may be processed into textiles.
In this context, we have developed a BL thermistor: polycarbonate/α’-(BEDT-
TTF)2IxBr3-x, were α’-(BEDT-TTF)2IxBr3-x is organic molecular semiconductor the
electrical resistance of which is highly sensitive to temperature. In the body tempera-
ture range its temperature coefficient of resistance (TCR) is –1.4 %/deg. This value is 4
times greater than that reported for the platinum thermometer (TCRPt111 = 0.3) [26].
We have recently pointed out [27] that this thermistor may be processed into textile
using an impregnation procedure as it is shown in Figs. 2 and 3. However, our latest
microscopic study revealed that this attaching approach provoked the formation of
some cracks on the conductive sensing layer of the BL thermistor: polycarbonate/α’-
(BEDT-TTF)2IxBr3-x (Fig. 4).

The SEM data stimulated us to look for another approach to the second phase. The
experimental details of the developed fabricating method, as well as its advantages, will
be presented in next sections.

Fig. 1. Skeletal formula of bis(ethylenedithio)tetrathiafulvalen (BEDT-TTF)
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3.1 Preparation and Characterization of the Flexible Lightweight BL
Thermistor: Polycarbonate/α’-(BEDT-TTF)2IxBr3-X

In line with the reported synthetic procedure the BL thermistor was fabricated as
follows: first, a 25 μm thick polycarbonate (PC) film which contains a 2 wt% of
BEDT-TTF was prepared. To do this, the film was cast on a glass support at 130 °C
from a 1,2-dichlorobenzene solution of polycarbonate and BEDT-TTF. Second, to
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Fig. 2. Photo image of the fabricated e-textile: BL thermistor (1) is attached to the rigid
impregnated part (2) of the polyester fabric (3); 4–electrical connections
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Fig. 3. Photo image of the BL thermistor (1) that was attached to the rigid impregnated part of
the polyester fabric (2)

226 V. Lebedev et al.



cover the film with the (001) oriented layer of α’-(BEDT-TTF)2IxBr3-x, we exposed the
film surface to the vapors of a dichloromethane solution of IBr. The surface of the film
easily swells under this treatment, which facilitates the migration of BEDT-TTF
molecules from the bulk of the film to the swollen film surface where they are oxidized
by IBr. This redox process induces the rapid nucleation of the (BEDT-TTF)2IxBrx-3
conductor with a consequent formation of the conductive polycrystalline covering
layer. The resulting surface-modified film was fully characterized using Scanning
Electron Microscopy (SEM) and X-ray diffraction techniques; its R(T) dependence in
the range of the human body temperatures was also investigated.

Figure 5 demonstrates that the sensing layer of the BL thermistor polycarbonate/α’-
(BEDT-TTF)2IxBr3-x consists of submicro plate-like crystallites the crystal plans of
which are oriented in parallel to the BL thermistor plan.

The powder X ray diffraction pattern (Fig. 6) shows only (00l) reflections of the α’-
(BEDT-TTF)2IxBr3-x semiconductor. Therefore, the sensing layer of the thermistor has
(001) orientation; it means that the layer is dominantly formed from c*-oriented α’-
(BEDT-TTF)2IxBr3-x crystallites. The direct current resistance measurements demon-
strate that the value of the room temperature sheet resistance of the developed BL
thermistor is ≅30 kΩ/cm2 and its conductance shows the linear temperature depen-
dence in the temperature range from 28 to 50 °C; the sensitivity of the thermistor sheet
resistance to temperature was as 250–300 Ω/cm2 per degree.

In conclusion of this section, we would like to note that the above presented SEM
and X-ray data, as well as the resistance temperature dependence, are in accordance
with the early reported ones [21, 27].

1

2

Fig. 4. The Scanning Electron Microscopy (SEM) image of the cracks (1) developed on the
conductive sensing layer of the BL thermistor (2) attached to the rigid impregnated part of the
polyester fabric
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3.2 Integration of BL Thermistor into Textile

To highlight the formation of the above described crack-like defects, we used a new
approach to engineering of the polyester temperature sensing e-textile. We suggest that
a rigid flat unit at the polyester textile to which the thermistor has to be attached may be
prepared by locally melting of a small part of the textile being sandwiched between two
plates. Under local melting the small part of the polyester textile has to lose its
textile-like texture while becoming film-like. Due to such procedure, the melted part
must become much more rigid as compared to the rest of the textile.

Fig. 5. SEM image of the conductive sensing layer of the BL thermistor: polycarbonate/α’-
(BEDT-TTF)2IxBr3-x
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Fig. 6. X-ray diffraction pattern of the conductive sensing layer of the BL thermistor:
polycarbonate/α’-(BEDT-TTF)2IxBr3-x
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In order to form the rigid support for the BL thermistors, the part of the textile was
sandwiched between two glass slides and heated up to the textile melting point
(≅250 °C) using soldering iron; the textile plastification process was visually con-
trolled. This procedure allowed us to prepare a smoother sensor support as compared to
that fabricating by textile impregnation. The BL thermistor was attached to the rigid
polyester-based support using the glue which was unable to destroy the polycarbonate
layer of the polycabonate/α’-(BEDT-TTF)2IxBr3-x film.

At the final stage of the prototype fabrication, the electrical contacts were attached
with graphite paste to the conductive temperature sensing layer of the thermistor
(Fig. 7). In fact, the fabricated sensor can be easily interfaced with an embedded
system, e.g. a wireless sensor node [28].

The surface of the temperature sensing layer of the BL thermistor was investigated
using SEM. Figure 8 shows the sensing layer of the BL thermistor is attached to the
rigid melted part of the polyester textile has no imperfectness which can be found in
Fig. 4.

3.3 Temperature Testing of the E-textile Prototype

We test the e-textile prototype by connecting the sample to a wireless sensor node
‘WaspMote’. In particular, we connect the sensor to the Analogue-to-Digital Converter
(ADC) located in the Micro Controller Unit (MCU) of the sensor node. This simple
testbed is prepared to ensure the proof of concept validation and performing the
experiments associated with sensing.

The developed prototype was characterized as a temperature sensor in the tem-
perature range from 23 to 50 °C. Figure 9 shows that the prototype electrical resistance
almost linearly depends on temperature. As the resistance of the prototype decreases
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Fig. 7. Photo image of the new prototype of the temperature sensing textile: 1-polyester textile;
2- BL thermistor attached to the flat support (3) which was fabricated by textile melting; 4-
electrical graphite contacts and 5- wire-based electrical contacts
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from 38 kΩ at 23 °C to 27.6 kΩ at 50 °C, the sensitivity of the fabricated sample of
the e-textile to temperature changes is 0.4 kΩ/degree. Therefore, the developed BL film
is capable of controlling very small temperature changes (0.01–0.005 degree).

The prototype of the temperature sensing e-fabric was additionally subjected to
several heating cycles from room temperature up to 60 °C (Fig. 10).

The data presented in Fig. 10 demonstrate that the electrical response of the fab-
ricated prototype to temperature is reversible, repeatable and stable in time. The

Fig. 8. SEM image of the surface of the BL thermistor attached to the rigid film-like platform
which was prepared using molding process.

Fig. 9. Resistance temperature dependence of the e-textile equipped with lightweight BL
termistor: polycarbonate/α’-(BEDT-TTF)2IxBr3-x
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sensitivity of the conductive fabric to the temperature in the range of the human body
temperatures is −1.2 %/deg; this well corresponds to the previously reported data [27].
This result shows that the developed organic BL film-like thermistor may successfully
be used as temperature sensing components in smart wearable fabrics making it pos-
sible to measure very small temperature changes in the body temperature range.
Additionally, it should be mentioned that biocompatibility testing of the thermistor is in
progress.

4 Future Work

In our future work we plan a seamless integration of the developed sensing technology,
as well as a processing unit and a wireless communication chip, in textile. To realize
this idea into practice we are going to adopt the integration techniques developed in the
EU Projects, e.g. PASTA (www.pasta-project.eu), Place-it (www.place-it-project.eu).

The integration of the developed sensing technology in textile has a high potential
towards a number of monitoring application: environmental sensing (using the tem-
perature and humidity sensors enables one to infer about the fire status), rehabilitation
(ECG, EMG, temperature sensors). The application of a wireless technology makes the
e-textile an autonomous monitoring system which has high potential in the forthcoming
era of the internet of things [29, 30]. This activity requires further research, e.g. in
communications [31] and power management [32], to guarantee autonomous operation
of the system.

5 Conclusion

The BL thermistor: polycarbonate/α’-(BEDT-TTF)2IxBr3-x was fabricated and the
texture, structure of its conductive sensing layer were investigated using SEM and
X-ray analyses. The resistance temperature dependence of the thermistor was also
measured. It was showed that all the investigated properties are in good agreement with

Fig. 10. Electrical response of the developed prototype of the e-textile to temperature cycles.
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the earlier reported data being indicative of the good reproducibly of the low cost
synthetic procedure developed for the lightweight BL thermistor preparation.

A new approach to integrating the BL thermistor into textile was developed: the
thermistor was attached to the smooth film-like rigid support prepared directly at the
polyester textile by its local melting. It was found that the melted part of the textile is
much more rigid as compared to the rest of the fabric.

The fabricated prototype was characterized as a temperature sensor in the tem-
perature range from 23 to 50 °C. The temperature test revealed that the electrical
response of the fabricated e-textile to temperature is reversible, repeatable and stable in
time. The developed textiles are capable of controlling very small temperature changes
with accuracy of 0.005 °C, which is significantly better than that reported for com-
monly used thermistors; for example, the measurement accuracy of a Pt-1000 detector
is 0.01 °C. This kind of e-textile may find a number of applications in biomedical
monitoring technologies usually reserved for lightweight highly sensitive temperature
sensors with electrical detection principle.
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