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Abstract. This work presents a paradigm shift and introduces a data-
centric security architecture for the COMPOSE framework; a platform
as a service and marketplace for the IoT. We distinguish our approach
from classical device-centric approaches and outline architectural as well
as infrastructural specifics of our platform. In particular, we describe how
fine-granular and data-centric security requirements can be combined
with static and dynamic enforcement to regain governance on devices and
data without sacrificing the intrinsic openness of IoT platforms. We also
highlight the power of our architecture, converting concepts such as data
provenance and reputation into efficient, highly useful, and practically
applicable complements.
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1 Introduction

COMPOSE is an FP7 EU funded project targeting at the development of a
full end-to-end solution for developing Internet of Things (IoT) applications
and services: from mobile apps for users interaction, to connected objects that
sense or interact smartly with the environment, to a scalable data streaming
and processing infrastructure, to service discovery, composition and deployment
of applications. The logical architecture of the COMPOSE platform is depicted
in Fig. 1. Its main components are the COMPOSE Marketplace, the runtime
engine, and the Ingestion layer.

The Marketplace is the front-end interface to developers for the publication,
exchange, and access of reusable services. It consists of a graphical interface for
creating application logic and offers mechanisms for the discovery of existing
services, registration of new ones, and the deployment of applications.

Applications are executed on the second layer, the runtime, which is trans-
parent to the developers and provides interfaces for monitoring and support for
usage analytics. It is based on an enhanced version of CloudFoundry [3], an
already established, open-source PaaS solution with a large community support-
ing its development. It provides the essential environment for hosting applica-
tions, in our case Node.js that we are using for workflow execution.
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Fig. 1. Conceptional view of the COMPOSE architecture

The third layer, the Ingestion layer, is the interface to the connected objects.
Bi-directional communication over different M2M and HTTP-based protocols
allows the remote interaction with the devices (e.g., requesting status updates,
performing actuations, reading sensor information etc.).

Connected objects play one of the most important roles in IoT systems since
the core concept is data aggregation and interaction with smart devices [9].
Within this context, COMPOSE has developed servIoTicy, a data storing and
streaming framework with support for device interaction [15].

To interact with real-world objects, users, and services, servIoTicy exposes
both, RESTful Application Programming Interfaces (APIs) and M2M proto-
cols (like MQTT, STOMP, and WebSockets). Through these interfaces, devices
can store sensor information on the platform. Developers can be notified about
updates or retrieve data based on special queries (e.g., time-series based analy-
sis). For this purpose, servIoTicy integrates ElasticSearch [1]. For sensor data
stream processing, the Apache Storm [16] component is used, in addition to
CouchBase [4] for storing data. Through exposing device communication via
REST protocols, servIoTicy also provides an important bridge between REST
and MQTT/WebSockets/STOMP [6] as most of the M2M protocols cannot be
utilised within a browser.

To simplify the creation and deployment of applications, COMPOSE pro-
vides glue.things (http://www.gluethings.com). It is a web-based application to
register and access COMPOSE components. It mainly offers the following fea-
tures: (1) Creating and configuring virtual smart objects in servIoTicy (allowing

http://www.gluethings.com
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them to store sensor data, create subscriptions to events, and generate actu-
ations), (2) testing the deployment of sensors by receiving sensor data in real
time, and (3) creating IoT applications through a visual workflow editor.

The latter is based on the popular open-source tool Node-RED (http://www.
nodered.org). This editor for the IoT allows the easy design of workflows based
on components that communicate with devices or services. It is based on node.js
and can be executed as a standalone or be integrated in a users application.
Workflows (called flows) are created in a drag-n-drop fashion by selecting avail-
able processes (called nodes) that can communicate with external services COM-
POSE services.

For the development of applications for connected objects, as well as for
mobile or web applications, COMPOSE provides libraries and mobile SDKs as
part of glue.things. Libraries for popular embedded platforms (like Arduino,
Flyport, mBed, SparkCore, etc.) are provided to simplify the interaction with
servIoTicy over the available protocols. In addition, JavaScript libraries are pro-
vided for web application development and mobile app development using cross-
platform frameworks like the Titanium Appcelerator.

The freedom to interact with numerous devices and applications, the ability
to process a new magnitude of data in completely novel ways, and the sim-
plification of the development process comes with a burden: The provisioning
of a security framework that supports the openness of IoT, ensures the gover-
nance over data, and supports non-security-experts in the development of secure
applications.

This burden is particularly hard when considering the application of exist-
ing security frameworks. Instead of fixed architectures and pre- and well-defined
application scenarios, we face unpredictable contexts in which data is processed
and applications are executed. Data becomes easily reusable, may be processed
by various types of applications with different functionalities and properties.
Further, applications simply emerge from the combination of other services or
applications. Their internal complexity may be completely hidden from the devel-
oper and their impact on data may be unknown or very hard to determine. Thus,
static security perimeters around applications or devices are infeasible and the
specification of their security policies is simply impossible.

2 Design Decisions

Our security framework addresses these issues by shrinking the security perime-
ter to the granularity of data. Instead of forcing developers to foresee which
possible application scenarios he wants to cover and which security policies and
enforcement technologies are required for that, we ask the entities generating
data in the system to define security policies for this very data. This idea is
inspired by the mechanisms designed to protect privacy by using the decen-
tralised label model (DLM) [10] extending flow policies introduced by Denning
and Denning [5]. Our approach mainly differs in the application of such tech-
niques to highly dynamic architectures in which enforcement must be applied

http://www.nodered.org
http://www.nodered.org
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in an ad-hoc fashion and various computational entities. Even more important
is the fact that we consider user-defined security policies. Users specify how,
by whom, and in which context their data should be processed and which data
should gain which kind of access.

Of course, fine-granular policies require complex evaluation and enforcement
machineries. This particularly holds for the IoT where additional dimensions,
such as spatial or temporal constraints need to be enforceable. Further, policies
must not only be able to define the specific security requirements for data and
entities but it must also be possible to evaluate them efficiently during static
analysis of software and networks as well as during dynamic flow enforcement.
Thus, a unified policy framework for our architecture is inevitable. Through the
combination of this unified policy framework with an attribute based identity
management (IDM) our security framework also simplifies the development of
policy enforcement tailored to specific applications.

The IoT will also deploy user-defined code. Thus, devices may run legacy,
vulnerable, or manipulated code changing their intentional functionality. They
may be physically manipulated to generate new data reading or perform differ-
ent actions. Further, services which process and consume IoT data may contain
malicious or vulnerable code. As a consequence, it is essential that a security
architecture for the IoT can detect misbehaving entities which do not allow
direct security enforcement. Hence, our architecture provides a reputation sys-
tem, monitoring devices, and security services. This also allows to use reputation
values as policy dimensions.

Finally, our security architecture aims for the definition of novel data security
policies by generating provenance information for individual data items. Through
a complete history of data, users will be able to define security policies which
can also prevent complex data harvesting attacks.

3 Architecture Overview

Centre of the security architecture (see Fig. 2) is the security core. It hosts essen-
tial components such as an attribute based IDM and the global policy decision
(PDP) as well as policy information points (PIP). While our architecture also
supports local instances of these components we use centralised servers to guar-
antee the consistency of security critical data. The same holds for additional
components that extend the functionality of the security core: The reputation-
and provenance manager, the static analysis, and the instrumentation compo-
nent. Reduced to these components, the architecture resembles classical security
architectures. Thus, the remainder of this section briefly outlines the functional-
ity of the components relevant for our data-centric framework before going into
more detail in the following sections.

To abstract from the complexity of servIoTicy we distinguish three main
components: Data Store, Data Management, and Service Object Registry. The
latter administrates virtual representations of devices, together with their secu-
rity policies and reputation information. In particular, reputation information
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Fig. 2. Outline of the COMPOSE security architecture

is updated frequently according to the use of the associated devices. As soon as
devices generate data, it is stored in the Data Store together with its appropriate
flow policies derived from device policies. Every time data is used, provenance
in the data store is updated based on the operations performed.

The data management which manages access to data and service objects,
deploys a local PDP and PIP. In this way, appropriate security monitors can
control access within the central data processing component of the overall archi-
tecture. The authorised usage of devices and data can be enforced and prove-
nance and reputation information can be generated. Additionally, local security
monitors can control data-centric flow-control policies.

servIoTicy can forward data to the runtime environment where it can be
processed by applications. They are either provided by COMPOSE or imple-
mented and/or composed by users of the platform. Similar to the data manage-
ment layer, the execution of every application is secured by dynamic security
monitors which can be either holistic, i.e., all components of an application are
monitored, or selected in-lined reference monitors. In this way, our architecture
enables the fine-granular flow tracking and enforcement of data and the moni-
toring of specific application properties. For efficient local enforcement and data
accumulation, this architectural setup also requires a local PDP, PIP, and stores
which allow the local accumulation of security metadata. System-wide security
meta data about an application, i.e. reputation information, ownership, or access
rules, are stored in the security registry.

The simplification of the creation and deployment of IoT applications is an
essential functionality offered by COMPOSE. Hence, it is important to comple-
ment this functionality with mechanisms that allow non-experts to assess the
compliance of their application with various security requirements. For this pur-
pose, we provide features for editing policy settings, validating and re-configuring
data flows within applications, for checking provenance, and for assessing the
reputation of system entities.



82 D. Schreckling et al.

Finally, to control access from external entities additional security monitors
in the communication infrastructure of COMPOSE are deployed.

4 Identity Management

Our platform offers an attribute-based approach. Every user can tag himself or
his entities with attribute values. Once entities are tagged with attributes, e.g.
the brand of the device, they can be used to specify security policies, e.g. accept
data only from devices from brand X. Main problem with this approach is to
ensure trust in this information without creating a centralised authority.

Our platform solves this by providing a generic attribute-based IDM frame-
work. This framework allows users to approve attribute information depending
on the group where they belong [12]. More specifically, a group membership is
defined as a tuple (u, r, g) where user u has role r in group g. But, before a mem-
bership is considered effective by the security framework, it has to be approved
by two parties: the administrator/owner of g, and u. This mutual agreement pol-
icy ensures that users cannot be misplaced in a group against their will, and also
that groups contain only users approved by administrators. As a result, users
of the platform can rely on groups of their choosing, e.g. the group containing
distributors of devices of brand X, to approve attributes used in their policies,
e.g. brand of the device.

5 Flow Enforcement

Inputs and outputs of any COMPOSE entity which can process data are anno-
tated with a data-centric flow policy. Apart from specifying the entities allowed
to access, execute, or alter a component, flow policies also describe the security
requirements of data entering a component and the security properties of data
leaving it. Thus, each data item is annotated with security meta-data. Therefore,
a unified policy framework is required to avoid additional evaluation overhead.
The policy language used in COMPOSE is inspired by ParaLocks [2].

Their main idea is to logically specify with so called parameterized locks
when a possibly polymorphic actor can retrieve information about a data item.
Open locks represent fulfilled conditions under which information can flow. A
set of such locks is interpreted as a conjunction of conditions. Combining those
conjunctions by disjunctions yield a policy. We adopt this security specification
as it is also based on the DLM, it is simple, evaluation is efficient, and it can be
used to map against classical access control schema.

To obtain a specification language feasible for the IoT domain, we merge the
Usage Control approach UCONABC [11] with ParaLocks and obtain so called
UsageLocks. It introduces typed actor and item locks which allow the checking of
actor and item attributes, defined by IDM. These locks prevent a blow up of the
set of required locks (each attribute could be modeled with another global lock)
and they introduce a greater flexibility as pre-defined locks can be used to check
user-defined attributes. Further, the new lock types also allow the definition of
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security contexts which depend on the data items themselves, their usage, and
on temporal or spatial constraints. Finally, we also distinguish between flow-
to- and flow-from-rules. While the first type of rule maps to the Horn clauses
introduced by ParaLocks, flow-from-rules invert this formalism to also allow the
specification of rules which describe conditions under which the modification of
data or resources is allowed.

To maintain scalability and efficiency, the enforcement mechanisms for the
policies described above, require techniques to avoid the dynamic and static
analyses and evaluation of policies whenever possible. We partially achieve this
through the generation of contracts which are also modeled using the lock-rule
system. A static analysis generates an over-approximation of the behaviour of
an entity and stores it in a JSON format which uses locks to specify how the
programming logic of an entity impacts the flow of information, e.g. by indicat-
ing under which conditions (lock status) a flow from an input parameter to an
output, such as a file, a socket, or to another COMPOSE entity takes place.

5.1 Dynamic Flow Enforcement

glue.things is based on node.js, i.e. the components used to build an applica-
tion run on top of node.js and the interaction and flow of data between single
nodes is managed by Node-RED. In order to support the enforcement of data-
centric security policies even when facing user-defined JavaScript code in appli-
cations, we modified the execution environment for single nodes by integrating
JSFlow [7]. It is a security-enhanced JavaScript interpreter which allows dynamic
flow tracking. It covers the full non-strict JavaScript as specified by the ECMA-
262 standard and allows the annotation of values with basic security labels. We
extended these labels and the JSFlow infrastructure to support UsageLocks and
their policies. Further, we extended JSFlow to support most language features
and libraries of node.js and Node-RED.

To also track the information flow between nodes, we modified the basic node
template of Node-RED. The primitives used for sending and receiving messages
between nodes have been extended. The message exchange now ensures that
security information for data, i.e. security policies and lock states, is available in
the nodes processing them but protected from the user. To also support basic
Node-RED node types, such as function nodes, we further modified the execution
primitives to apply our modified JSFlow. To maintain scalability and decrease
the performance impact, all other nodes, i.e. node templates deployed by the
COMPOSE provider, only symbolically execute the contract of a node to prop-
agate the security labels for data. This removes the need to apply JSFlow to the
complete execution of a node but requires additional pre-processing as explained
below.

5.2 Static Flow Enforcement

Evidently, contracts are an important pillar for the scalability of our architec-
ture. They are generated by an over-approximating static analysis of the flows
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generated by an application. The analysis for basic nodes, i.e. nodes which do not
represent another application composed, is based on TAJS [8]. Comparable to
JSFlow, we extended this static analyser by important language features required
to analyse Node-RED applications and to process policies based on UsageLocks.
Results from this version of TAJS can be transformed into a contract indicating
the flow-relevant behaviour of a COMPOSE entity.

To analyse and generate contracts for complete workflows, a simple model
checker has been implemented. It exploits the flow description provided by Node-
RED and extends it with contracts for applications which have already been
analysed. Basic nodes without contracts are analysed by our TAJS derivate to
generate and store their contract. Composed nodes, are forwarded to our model
checker. On top of the model resulting from this analysis cascade, the checker
identifies non-compliant data flows, i.e. it searches for traces which perform
access to data items although locks specified in the security requirements for
these items have not been opened.

These analysis results are also used in glue.things. As a consequence, devel-
opers with little or no security expertise are able to validate the compliance of
applications with the security requirements of their data or the data of other
COMPOSE users. This prevents the deployment of insecure applications which
will then be subject to dynamic enforcement.

The use of contracts can tremendously simplify the analysis of complex soft-
ware and support dynamic enforcement. We further exploits the precise infor-
mation generated during the static analysis to allow code instrumentation. This
does not only involve the instrumentation of JavaScript code in user-defined
function or customised Node-RED nodes, but it also includes the instrumenta-
tion of workflows. Thus, we are able to further reduce the performance impact
of the dynamic flow control and can integrate logging or enforcement mecha-
nisms, e.g. prevent access to particular files, in security critical control flows of
applications.

6 Reputation

The reputation manager (see Fig. 2), also called PopularIoTy [13,14], aims to
cover scenarios when additional information collected during runtime, and users’
feedback can help to assess whether a certain application or Service Object is
providing a “good” service. Therefore, popularIoTy calculates reputation for
entities based on three aspects: popularity, activity, and feedback.

Popularity reflects how often a certain Service Object or application is used,
i.e. invoked by other entities. In the case of the data management, whenever data
is generated, notifications are stored in the data storage. Likewise, the monitors
placed in the runtime store notifications when an application is called. This
information is processed to calculate a popularity score.

The activity score attempts to reflect whether an entity is behaving properly.
In specific cases, data items, i.e. sensor updates, within the data management can
be discarded due to several reasons: lack of security policy compliance, developer-
provided source code interpretation errors, or developer-intended filtering. When
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sensor updates are discarded due to the previous reasons, a notification is stored
in the data store. Afterwards, this information is used by popularIoTy to decrease
the activity score for Service Objects that drop sensor updates, especially in the
case of policy compliance and source code problems. To assess whether an appli-
cation behaves as expected, security contracts are used. Security contracts for
applications could be refined by developers when it is not feasible to deter-
mine certain flows, e.g. data is sent to a URL received as a parameter. This
allows the reputation manager to leverage the monitors placed in the runtime to
detect when the application behaves as promised by the developer in the con-
tract refinement. In case the application complies, it will get a positive activity
score reward.

PopularIoTy also encourages users to contribute to the reputation calculation
through feedback. It is comprised of text, and a numerical value reflecting the
user’s perception about the Service Object or application.

7 Data Provenance

The data provenance manager tracks origins of data, the operations performed
on it, and the time when operations took place. This empowers users to define
policies based on data provenance, e.g. allow a Service Object to receive data
only if it has been processed by a particular application. Further, visualising the
provenance of data can help users to detect when certain errors occur; for exam-
ple, if several data sources are combined, but one of them is malfunctioning,
the developer could examine the sources of correct values, and compare them
with wrong values to isolate the malfunctioning device. Also, provenance infor-
mation has an interesting potential to help to protect the user’s privacy. For
instance, it could eventually help to detect when particular applications harvest
and correlate information from specific entities, hinting to the possibility of user
profiling.

8 Conclusion

The ability to simplify the development of applications for the IoT and mitigating
the overhead for their deployment is essential for the emerging and wide-spread
installation of smart devices. COMPOSE provides important tools to support
this process and offers a platform for the design and implementation of both
innovative and experimental as well as business application scenarios. We have
shown how to accommodate this rapid development processes with data-centric
security mechanisms. There are far simpler security technologies which could be
implemented with less effort and a smaller performance impact. However, they
require a clear security expertise at the developers side, concise and complete
requirement collections, carefully selected security primitives at specific enforce-
ment points and usually produce isolated silos of devices and services for specific
application scenarios. The security paradigm chosen in COMPOSE removes this
burden from the developer and delegates it to sophisticated security mechanisms.
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They reconfigure and relocate security enforcement as needed and in accordance
to the security requirements a user specifies for his data. In this way, our archi-
tecture presents the key to open closed silos and supports the most important
but seemingly contradictory properties of the IoT: Openness, Simplicity, and
Governance.
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