
Towards Defining Families of Systems in IoT:
Logical Architectures with Variation Points

Simone Di Cola(B), Kung-Kiu Lau, Cuong Tran, and Chen Qian

School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK

{dicolas,kung-kiu,ctran,cq}@manchester.ac.uk

Abstract. In system design, the distinction between a logical architec-
ture at design level and the corresponding physical distributed architec-
ture at implementation level is recognised as good practice. In this paper
we show how we can define logical architectures in which variation points
can be defined explicitly. Such architectures define families of systems,
and should therefore be useful for defining such families in IoT.

Keywords: Software architecture · Product families · Component
model · Variability

1 Introduction

The distinction between a logical architecture and its physical counterpart, a
physical distributed architecture, is well-known in system design and is deemed
good practice. A logical architecture can be regarded as a design, with the cor-
responding physical architecture as its implementation. For example, in [4] Broy
describes different architecture levels for cars (Fig. 1): at design level he identifies
a logical architecture which, at platform level, is mapped to its corresponding
hardware architecture.

In the provisioning of Cloud services, the architecture of software and hard-
ware components is a very challenging task [11]. Specifically, a software archi-
tecture S is a kind of logical architecture, since S is normally regarded as a
design level artefact1. However, in our view, S often looks more like a physical
architecture, particularly when the level of abstraction is low [3].

At a low abstraction level, architectural units (with ports) defined by ADLs
(architecture description languages) [21] can appear to resemble chips (with
pins). Consequently, an ADL architecture (containing architectural units con-
nected together via their ports) is similar to a circuit boards (containing chips
wired together via their pins). This physical resemblance can suggest that a
software architecture is not a logical architecture, but a physical one. More
importantly, this resemblance also seems to carry over into certain architectural
properties of an ADL-defined software architecture.
1 Notwithstanding Broy’s view of software architectures as task level artefacts, as

reflected by the automotive software standard AUTOSAR (www.autosar.org).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.) IoT 360◦ 2015, Part I, LNICST 169, pp. 419–426, 2016.

DOI: 10.1007/978-3-319-47063-4 43

www.autosar.org


420 S. Di Cola et al.

Fig. 1. Broy’s architecture levels for cars [4].

The property we want to focus on is the ease of explicitly defining vari-
ation points, as in a feature model2 [17] in family of systems [5,24] for IoT.
On a circuit board, switches can direct flow in various directions; correspond-
ingly, in some ADLs (e.g. Koala [28]) switches are used to guide (and config-
ure) bindings between architectural units. However, switches do not fully define
variation points in the sense of feature models, namely optional, alternative
(exclusive ‘or’), and or (inclusive ‘or’). At best, switches can be used to create
templates for generating different behaviours (code fragments) that correspond
to optional or alternative features. Moreover, a feature model can also define
more general dependencies between features as composition rules (e.g. feature A
requires/excludes feature B), but switches cannot define such rules.

In this paper we briefly show how we define logical architectures in which we
can explicitly define the full set of variation points; the latter are thus first-class
citizens in our architectures. We can also handle composition rules.

2 Related Work

Our work in this paper is on the topic ‘Variability and architecture description’.
A key observation in [12] is that “variability is often not explicitly described

in software architectures”. Our work (partially) addresses this issue: we show
how we can define logical architectures with explicit variation points.

Existing approaches that also define explicit variation points include the
ADLs Koala [28], xADL [9], and Mae [27]. In terms of variation points, the

2 A hierarchical representation of a product family in terms of features.



Towards Defining Families of Systems in IoT 421

difference between these approaches and ours is that they only define optional
and alternative variation points, whereas we define all possible variation points.

In Koala, an alternative variation point is defined by a special construct
called switch, which routes connections among component interfaces, according
to input coming from a special component called module. A Koala architecture
is a template, and a module is used to configure its instances. To generate a
particular instance, the Koala compiler removes unconnected components.3

Koala also allows variation within a component via a diversity interface
(a special kind of required port). However, a diversity interface only provides a
general parameterisation mechanism, which allows any kinds of variations that
are possible at component code level. So it does not define variation points at
architecture level.

In xADL, architectures are modelled as instances of predefined XML schemas.
At architectural level, an optional variation point is expressed by the optional
tag. Like a Koala diversity interface, a variant tag defines variation within a
component. Both tags are guarded by user-defined Boolean expressions, which
must respect their semantics. For instance, a variant tag only specifies alterna-
tives if the user defines guard expressions which are mutually exclusive.

As a predecessor of xADL, Mae also has a textual language to define archi-
tectures with variability. Architectural elements can be included, or excluded by
evaluating the associated name/value pairs.

Other ADLs, like MontiArcHV[14] and Plastic Partial Component [23], do not
define variation points explicitly, but only place-holders for different realisations of
a named but otherwise unspecified feature. Like in Koala, an architecture in these
ADLs is a template that needs to be configured in order to derive its instances.

3 Defining Logical Architectures with Variation Points

Before we describe our approach, we need to be precise about what we mean by
logical architectures. We follow the definition given in [25]:

“The logical architecture is a breakdown of the functionality into inter-
acting logical components. It represents the functional decomposition of
a system into functional components, as well as the behaviors of these
components at the logical level. The functional components provide the
functionalities described in the requirements model.”

A logical architecture is thus the logical view of a system architecture [18].
Clearly ADLs, or more generally, component models [19,20] can be used to

define logical architectures. However, for reasons mentioned earlier, and judg-
ing by existing work, it seems that it is not straightforward to define variation
points in ADL-defined software architectures. Consequently, we decided to use a
component model [7] to define logical architectures, and in our model, we have
defined variation points explicitly.
3 Extensions to Koala for configuration definition and generation are provided by

Koalish [2] and Kumbang [1].



422 S. Di Cola et al.

Fig. 2. Levels of abstraction in product family artefacts [26].

Our motivation is to define logical architectures for Cloud systems that will
be as close a match as possible to feature models, rather than ADL-defined
architectures, in the context of product family artefacts (Fig. 2). Supporting the
development of family of services is very useful for the production of IoT (Internet
of Things) oriented applications, where services are related to context based
information [10]. However, this means we have to define logical architectures as
trees, since feature models are trees.

Our approach is based on a component model (X-MAN [15]) useful to develop
also Cloud systems [8], that constructs logical architectures as trees. In X-MAN,
components can be atomic or composite, and architectures are built by hier-
archically composing components using connectors that implement coordina-
tion mechanisms. Thus an architecture is a tree of coordinated components,
both atomic and composite. In Fig. 3, AverageMPH, AverageMPG, Maintenance,
Monitoring, FrontDetection, and BackDetection are atomic components,
whereas AutoCruiseControl and AutoBrakeBackDetection are composite com-
ponents. The insets show these composite components as trees.

However, X-MAN does not define variation points, and therefore it cannot
define product families. Hence, we expanded it with variation operators and fam-
ily connectors; together they realise the variability expressed by variation points
in a feature model. Variation operators are applied to X-MAN architectures to
generate variations which are tuples of X-MAN architectures. Family connec-
tors are applied to these tuples to generate product families. Thus the expanded
model (FX-MAN [7]) creates architectures with a full set of variation points.
Such architectures are product families described by feature models.



Towards Defining Families of Systems in IoT 423

Fig. 3. Logical architecture for Vehicle Control Systems.

An example4 of a logical architecture is shown in Fig. 3. It is the logical
architecture of a product family of vehicle control systems (VCS), whose feature
model is shown in Fig. 4.

As can be seen in Fig. 3, in a logical architecture the first-class citizens are:
X-MAN architectures, variation operators and family connectors. X-MAN archi-
tectures appear at the bottom, and variation operators appear on top of these
architectures. In Fig. 3 there are three Optional, two Alternative and one Or
variation operators. Variation operators can be nested like variation points in
feature models; in Fig. 3 an Optional, an Alternative and an Or variation oper-
ators are nested. Family connectors appear on top of variation operators, or
X-MAN architectures which are mandatory; in Fig. 3 there are one F-Selector,
and one F-Sequencer which connects to a mandatory X-MAN architecture
AutoCruiseControl.

Clearly the logical architecture of VCS mirrors the tree structure of its fea-
ture model (Fig. 4). Indeed, the leaves of the feature model are implemented by
X-MAN architectures. For instance, the AverageMPH feature is implemented by

4 The example has been created using our FX-MAN Eclipse tool.



424 S. Di Cola et al.

Fig. 4. Feature model for Vehicle Control Systems.

the AverageMPH component. Variations specified by variation points in feature
models are generated by operators that take as input tuples of X-MAN architec-
tures and return tuples of their variations. For example, an Optional variation
operator applied to the AverageMPH component returns the tuple 〈AverageMPH,
∅〉. The product explorer view at the bottom of Fig. 3 shows all the variations
in the VCS example. Finally, the product family defined by a feature model is
constructed by family connectors that compose tuples of X-MAN architectures.
In the example, the product family is constructed by the family connectors F-
Selector and F-Sequencer. The product family contains 48 products, as can be
seen in the product explorer view.

4 Discussion and Conclusion

Our logical Cloud architecture is executable: all the products in the product
family it defines are composed from executable X-MAN components. This is
in contrast to the general nature of a logical architecture as merely a logical
representation (of the decomposition) of the function hierarchy (Fig. 1), i.e. a
structure without behaviour. Executability means our logical architecture can
realise not only the feature model (except for non-functional features) but also
the functional model of the domain (which defines the behaviour of all possible
products in the domain). We are currently examining suitable formulations of
the functional model for facilitating the validation of its realisation.

Our logical architecture is a tree, so in terms of levels of abstraction for
product family artefacts, it is closer to a feature model than an ADL-defined
architecture (Fig. 2). This means that in practice the construction of a product
family architecture, which is currently a difficult challenge [6,13], can be closely
guided by the feature model. Moreover, since it can also realise the functional
model, a logical architecture constructed this way can be a reference architecture
for the domain, the construction of which is currently also a difficult challenge
[22]. It will be interesting to investigate these issues further.

Although ADL-defined architectures can also serve as logic architectures,
current ADLs do not define all possible variation points as first-class citizens.



Towards Defining Families of Systems in IoT 425

For instance, Koala, xADL, and Mae do not define the Or (inclusive ‘or’) varia-
tion point at architecture level. However, some ADLs provide variation mecha-
nisms at component code level. Such variations are internal to components and
can be defined in arbitrary manners. This can be done in Koala via a diversity
interface and in xADL via a variant tag. By contrast, our approach defines
the full set of variation points as first-class citizens, with fixed semantics. Our
experience provides some evidence that it is easier to define variation points
using our logical architectures.

With variation points as first-class citizens our logical architecture explicitly
contains all the members of a product family. This means that all the prod-
ucts can be extracted directly, rather than configured individually. Furthermore,
composition rules can be realised by filters applied to the whole product family.

Returning to Fig. 1, for a chosen platform our logical architecture can be
deployed to a physical architecture. In this regard, it maybe advantageous to
transform our logical architecture into an equivalent ADL one, especially when
the last resembles a hardware architecture, e.g. [16].

Finally, since our work has been done in the component-based development
community, we would really appreciate any feedback from the Cloud architecture
community.

References

1. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: a domain ontology for mod-
elling variability in software product families. Adv. Eng. Inf. 21, 23–40 (2007)

2. Asikainen, T., Soininen, T., Xu, Y.: A koala-based approach for modelling and
deploying configurable software product families. In: van der Linden, F.J. (ed.)
PFE 2003. LNCS, vol. 3014, pp. 225–249. Springer, Heidelberg (2004)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series
in Software Engineering, 3rd edn. Addison-Wesley, Boston (2012)

4. Broy, M.: Challenges in automotive software engineering. In: Leon, J., Osterweil,
H., Rombach, D., Soffa, M.L. (edr.) 28th International Conference on Software
Engineering, pp. 33–42. ACM (2006)

5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2002)

6. Clements, P.: Biglever newsletter: from the ple frontline - paul’s three surprises:
part 3

7. Cola, S.D., Lau, K.-K., Tran, C., Qian, C., Arshad, R., Christou, V.: A component
model for software product families. In: Paper submitted to the 18th International
ACM Sigsoft Symposium on Component-Based Software Engineering (2015)

8. Cola, S., Tran, C., Lau, K.-K., Celesti, A., Fazio, M.: A heterogeneous approach for
developing applications with FIWARE GEs. In: Dustdar, S., Leymann, F., Villari,
M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 65–79. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-24072-5 5

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the
development of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 14, 199–245 (2005)

10. Fazio, M., Celesti, A., Puliafito, A., Villari, M.: An integrated system for advanced
multi-risk management based on cloud for IoT. In: Re, G.L. (ed.) Advances onto
the Internet of Things. AISC, vol. 260, pp. 253–269. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-24072-5_5


426 S. Di Cola et al.

11. Fazio, M., Puliafito, A.: Cloud4sens: a cloud-based architecture for sensor control-
ling and monitoring. IEEE Commun. Mag. 53(3), 41–47 (2015)

12. Galster, M., Avgeriou, P., Weyns, D., Männistö, T.: Variability in software archi-
tecture: current practice and challenges. SIGSOFT Softw. Eng. Notes 36(5), 30–32
(2011)

13. Garlan, D.: Software architecture: a travelogue. In: Proceedings of the on Future
of Software Engineering, FOSE, pp. 29–39. ACM, New York (2014)

14. Haber, A., Rendel, H., Rumpe, B., Schaefer, I., Van Der Linden, F.: Hierarchi-
cal variability modeling for software architectures. In: 15th International Software
Product Line Conference (SPLC), pp. 150–159. IEEE (2011)

15. He, N., Kroening, D., Wahl, T., Lau, K.-K., Taweel, F., Tran, C., Rümmer, P.,
Sharma, S.: Component-based design and verification in X-MAN. In: Proceedings
of Embedded Real Time Software and Systems (2012)

16. Tran, C., Saudrais, S., Lau, K.-K., Štěpán, P., Tchakaloff, B.: A holistic
(component-based) approach to autosar designs. In: Proceedings of 39th EUROMI-
CRO Conference on Software Engineering and Advanced Applications, pp. 203–
207. IEEE (2013)

17. Kyo, C., Kang, J.L., Donohoe, P.: Feature-oriented product line engineering. IEEE
Softw. 19(4), 58–65 (2002)

18. Kruchten, P.: The Rational Unified Process: an Introduction. Addison-Wesley Pro-
fessional, Boston (2004)

19. Lau, K.-K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng.
33(10), 709–724 (2007)

20. Lau, K.: Software component models: past, present and future. In: Proceedings
of the 17th International ACM Sigsoft Symposium on Component-based Software
Engineering, pp. 185–186. ACM (2014)

21. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

22. Nakagawa, E.Y.: Reference architectures and variability: Current status and future
perspectives. In: Proceedings of the WICSA/ECSA 2012 Companion Volume,
WICSA/ECSA 2012, pp. 159–162. ACM, New York (2012)

23. Pérez, J., Dı́az, J., Costa-Soria, C., Garbajosa, J.: Plastic partial components:
a solution to support variability in architectural components. In: Joint Working
IEEE/IFIP Conference on Software Architecture, & European Conference on Soft-
ware Architecture, WICSA/ECSA, pp. 221–230. IEEE (2009)

24. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Berlin (2005)

25. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: Future of Software Engineering, FOSE 2007, pp.
55–71. IEEE Computer Society, Washington (2007)

26. Sinnema, M., Deelstra, S., Nijhuis, J., Dannenberg, R.B.: COVAMOF: a framework
for modeling variability in software product families. In: Nord, R.L. (ed.) SPLC
2004. LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

27. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming archi-
tectural evolution. In: Proceedings of the 8th European Software Engineering Con-
ference Held Jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ESEC/FSE-9, pp. 1–10. ACM, New York (2001)

28. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-
nent model for consumer electronics software. IEEE Computer (2000)


	Towards Defining Families of Systems in IoT: Logical Architectures with Variation Points
	1 Introduction
	2 Related Work
	3 Defining Logical Architectures with Variation Points
	4 Discussion and Conclusion
	References


