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Abstract. As cloud services are becoming increasingly popular, the number of
operating data centers is accordingly increasing, together with the need of imple‐
menting federated data centers and clouds. In this context, we consider a frame‐
work for achieving energy efficiency in federated clouds, by means of continuous
monitoring and SLA renegotiation, coupled with the operation of prediction and
multi-layered optimization components. In this paper, relevant prediction and
optimization components, based on Support Vector Regression and Bin-Packing
solving heuristics, operating at local data center level are examined and the
experimental results of their deployment in a real-life testbed are presented and
discussed.

Keywords: Federated data centers · Energy minimization · Optimization ·
Support vector regression · Bin-packing problem

1 Introduction

The ever increasing demand for computing capacity and the resulting burgeoning of
large scale Data Centers (DCs), which constitute huge energy sinks, have a direct impact
on the ICT related energy consumption. This huge energy consumption poses a great
challenge for the energy sector and the problem is further intensified by the volatility of
the energy markets and the inability of Smart Grids to follow the electricity demand-
response model, which impedes the seamless integration of large scale DCs to the energy
network. Thus, Smart Grid operators need to address on the one hand the immense
energy consumption of DCs and on the other hand the erratic operation of Smart Grids,
caused by the inability to follow the demand-response paradigm.

To elaborate on the first of the two problems, the increase of DCs, which is accom‐
panied by huge electricity consumption and sub-optimal energy management, directly
affects their energy footprint and the environmental conditions. It is well known that the
average server utilization in DCs is low, often below 30 % of the maximum server load
[1, 2] and only 10 % in case of facilities that provide interactive services [3]. This low
utilization is primarily due to two reasons: (i) the provisioning of a DC is done based
on the expected peak load, rather than the average load. For interactive services, peak
utilization often exceeds the average utilization by more than a factor of three [3]; and
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(ii) in order to provide redundancy in the event of failure. DC operators deploy more
systems than are actually needed. The over-design and over-provisioning of DCs and
the increased number of low utilized servers, have significantly increased the waste of
energy. In the last couple of years, the electricity consumed by DCs has doubled, repre‐
senting an aggregate annual growth rate of 16.7 % per year worldwide [4]. Approxi‐
mately 80 % of this growth is caused by the increased electricity used by servers, 10 %
by the growth in electricity used for DC communications and around 10 % by the growth
in electricity by storage equipment.

Besides electricity consumed for supporting the computational operation of the
servers, a huge amount of energy is also consumed for the cooling of DC servers. To
lower this waste of energy, DC containment strategies (both hot aisle and cold aisle) are
widely regarded as the starting point for energy-efficiency best practices. Moreover, the
so called “Green DCs” aim to use a number of green electricity sources (e.g. photovoltaic
cells, geothermal power, hydroelectric energy, etc.), for normal operations and cooling
purposes. The results are, in many cases, impressive, but they still represent a minority
of the deployed DCs and even in those cases the intermittent nature of green electricity
sources make the need for integration of green energy sources to the energy network
and for stable Smart Grid operation more actual than ever.

As already highlighted above, this additional problem, that is the instability of the
Smart Grids and the difficulty to follow the electricity demand-response model consti‐
tutes a major problem in the energy sector. In particular, as Europe shifts away from
fossil fuels, electricity is becoming an even more important energy vector and the seam‐
less integration of renewable energy sources to the energy network becomes imperative.
More than 29 European countries have targets for a share of renewable energy in the
range of 10–33 % until 2020. Achieving these goals is vital for the EU internal energy
market, as it will lower the dependency on importing oil and it will help towards a more
sustainable growth. The implementation of more intelligent and active transmission,
distribution and supply systems in the form of Smart Grids is central to the success of
such a development. Thus, Smart Grids are very high on the agenda of the European
energy and ICT sector. However, the problem is that Smart Grids have difficulty in
following the electricity demand-response model. The introduction of Smart City tech‐
nology is also being developed as a mechanism to enable intelligence in buildings, city
blocks and regions. As a result, we need solutions, which can support the features of the
Smart Grid, coupled with the capabilities of Smart Cities, in order to carefully manage
the energy profile of DCs, especially under periods of increased demand.

Recent literature suggests that the problem of optimizing and coordinating the energy
consumption of federated Data Centers and its alignment with the Smart Grid stabili‐
zation needs, is actively researched. In [23], a survey on the existing techniques utilizing
geographical load balancing for optimizing the energy consumption of Data Centers in
the context of a Smart Grid is presented. The optimization may have different targets,
including absolute energy consumption with respect to QoS guarantees [25], cost [24]
and carbon footprint [26], the techniques employed varying among Mixed Integer
Programming, Dynamic Programming, heuristics through Genetic Algorithms etc. [23].
Load balancing of Data Centers in the context of the Smart Grid are also investigated
in [30], where the authors present a two-stage framework for modelling the relevant
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interactions and formulate a cost-minimization problem based on linear programming.
Similarly, the authors of [29] present a cooperation scheme between Smart Grids and
Data Centers, with the aim to maximize the share of renewables in the energy mix used
for Data Center operation. The problem of optimal load (VM) allocation in federated
Data Centers is also tackled in [28], where a greedy heuristic is presented with a view
towards minimizing the carbon dioxide emissions due to Data Center operation. Finally,
in [27], an in-depth survey of existing algorithms and techniques for orchestrated energy
management and energy sustainability in federated clouds is presented.

In the direction of tackling the above problems and significantly contributing toward
improving the energy efficiency of DCs and stabilizing Smart Grids, the present paper
introduces a holistic approach interconnecting networks of DCs and Smart Grids,
addressing both problems in a complementary way. Specifically, in the context of smart
city and Smart Grid integration, a network of synergetic DCs can adjust its operation
shifting load to regions of renewable energy surplus, playing a key role toward Smart
Grid stabilization and “Green” operation of modern DCs. Moreover, the proposed
approach can be seamlessly integrated to legacy DC equipment discounting any capital
expenditure employing solely the software defined networking (SDN) and software
defined infrastructures (SDI) of legacy DC equipment. The proposed framework, devel‐
oped in the context of the European Union project: “Data centres Optimization for
energy-efficient and enviromentalLy Friendly iNternet (DOLFIN)” [5], facilitates there‐
fore the integration of a federated DC network to the Smart Grid within a Smart City
exchange network, allowing the optimal allocation of the cumulative load, based on
predictive optimization techniques, that will be presented hereafter. The efficacy of these
will be further corroborated by the actual results obtained by the in-house micro DC,
presented herein.

The remainder of the paper is organized as follows. Section 2 presents the DOLFIN
approach, exploiting SDN to seamlessly integrate the Smart Grid and DC networks in
a Smart City agglomeration. Thus, counteracting the adverse effect of erratically oper‐
ating Smart Grids and allowing for the energy efficient operation of DCs. Section 3
introduces the predictive optimization techniques employed by the DOLFIN ecosystem,
in order to implement the proposed approach. Section 4 presents the preliminary results
obtained by our in-house micro DC, after the employment of the predictive optimization
techniques described in Sect. 3. Finally, Sect. 5 concludes the paper and presents relevant
perspectives.

2 DOLFIN Flexible Approach

Modern DCs are part of computing and storage clouds, offering their customers Virtual
Machines (VMs) as a virtual operating environment. Exploiting this virtualization of
modern DCs and capitalizing on the benefits of SDN, the present approach focuses on
modelling, monitoring, and measuring the energy consumption of VMs. This real time
monitoring allows for the seamless, autonomic migration of VMs between servers of
the same DC or across a group of Energy-conscious, Synergetic DCs, aiming to (i)
optimize the overall energy consumption by dynamically changing the percentage of
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active versus stand-by servers and the load per active server in a DC, and (ii) stabilize
the Smart Grid energy distribution, under peak load and increased demand, by dynam‐
ically changing the energy consumption/production requirements of the local DCs.

To elaborate, the leeway provided by the independent management of VMs allows
for the optimal allocation of the computing load. On the one hand the optimal allocation
of VMs within the same DC could lead to the VM consolidation in favor of significant
energy savings emerging from the hibernation of inactive servers. On the other hand the
optimal allocation of VMs across synergetic DCs could allow for DCs to adjust their
operation in accordance with the Smart Grid needs, moving VMs to DCs where energy
is cheaper or abundant either due to the time difference of the respective DCs or due to
the existence of renewable energy surplus, generated by renewable energy sources in
the vicinity of the destination DC. The high-level architecture of such a network of
synergetic DCs interacting with the energy network is depicted in Fig. 1.

Fig. 1. Network of synergetic DCs interacting with the energy network.

Evidently, the stabilizing effect of the proposed paradigm allows the seamless inte‐
gration of renewable energy sources (RES) to the energy network, counteracting the
adverse effect of the intermittent green energy generation. In particular, occasional peaks
and troughs of green energy generation, leading to inverse power flow or reduced system
inertia can be balanced by the demand response of federated DCs, mitigating electrical
grid instabilities and system outage or blackout threats.

The above energy consumption optimization approach, revolves around three main
pillars, underpinning the DOLFIN ecosystem:

(a) Energy-conscious Synergetic DC-level: optimizing the energy consumption within
the limits of a single DC, based on system virtualization and the optimal distribution
of VMs. This is coupled with the dynamic adaptation of active and stand-by servers
and the load optimization per active server. Utilizing a monitoring framework to
measure the energy consumption per server module/networking component and
activate low-power states on devices.

(b) Group of Energy-conscious Synergetic DCs-level: optimizing the cumulative
energy consumption in a group of DCs, based on optimal distribution of VMs across
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all of the servers that belong in the group of DCs using load prediction methods for
the standalone DCs and the group of DCs. Measuring and predicting the energy
consumption on the DC level and achieving a decreased cumulative power
consumption across the whole group of DCs.

(c) Smart City-level: optimizing the energy consumption at the smart city level and
providing stabilization of the local Smart Grid, based on distribution of VMs across
the servers that are part of a group of DCs, following an electricity demand-response
approach. In order to stabilize the Smart City Energy consumption, the percentage
of active versus stand-by servers per DC is dynamically changed and the load per
active server is optimized.

The above hierarchical classification gives rise to four different optimization levels
that should be dealt with. In this course, a distributed spiral optimization process is
assumed dealing with these four levels of optimization. Specifically, during a single
optimization cycle the energy is optimized first by an internal control loop at servers
rack level, next at DC segment or DC level and then at federated DC level allowing load
relocation among energy conscious DCs. Thus, a network of interconnected DCs
employing the spiral optimization approach, could provide energy-efficient DC opera‐
tion in the context of a fully elastic cloud, while playing a key role in a Smart Grid energy
network balancing the stochastic energy surplus provided by renewable energy sources,
through efficient load relocation.

Moreover, even though the VM movement between servers in geographically
distributed groups of DCs is not trivial, as very strict Service Level Agreements (SLAs)
to the DCs’ clients should be guaranteed, the real time monitoring of SLAs described
above ensures that the VM movement will only exploit the leeway provided not leading
to any Quality of Service (QoS) breakage. Thus, the real time monitoring of SLAs
provides an additional degree of freedom to the flexible VM management allowing the
exploitation of the SLA margin to its fullest.

Having outlined the optimization levels of the DOLFIN approach pertaining to the
optimal VM allocation at four different levels, the relevant optimization problems need
to be formally formulated, whereas the predictive optimization techniques employed for
the problems in hand, need to be thoroughly described as well. In this course, the VM
optimization problem and the predictive optimization techniques employed are
presented hereafter.

3 Predictive Optimization

The employment of load prediction methods for the efficient prediction of the standalone
DC load, the synergetic DC load and the user load is of paramount importance for the
efficient optimization of the load allocation to the synergetic DCs. Such methods provide
energy predictions based on the user habits, the behavior and the workload patterns as
well as the weather forecast, allowing the devise of predictive energy patterns. Subse‐
quently, based on these a priori devised energy patterns the relevant optimization
modules can devise relevant plans optimizing the VM /load allocation to standalone and
synergetic DCs, based on the Smart Grid status.
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A number of techniques have been proposed for forecasting aggregated and corre‐
lated energy consumption inspired by machine learning, and have passed from linear
regression and autoregressive moving average models [6] to neural networks [7] and
boosting approaches [8] and finally to the Support Vector Machine For Regression
(SVR) that is a state of the art forecasting method [9–11]. The SVR uses the same
principles as the Support Vector Machine (SVM) for classification, but as output instead
of a real number, which has infinite possibilities, it returns a margin of tolerance, to
minimize error.

The SVR method is employed by DOLFIN for energy consumption forecasting, as
it combines several desirable properties compared with other existing techniques: it has
a good behavior even if the ratio between the number of variables and the number of
observations becomes very unfavorable, with highly correlated predictors, it makes
possible to construct a nonlinear model without explicitly having to produce new
descriptors (the famous “kernel trick”), while a deeply study of the characteristics of the
method allows to make comparison with penalized regression such as ridge regression
[12], whereas a number of pre-calibrated SVR toolkits can be found online [13], facil‐
itating the easier fine-tuning of the SVR.

Having fine-tuned the SVR parameters for the load prediction at DC and user level
an appropriate optimization algorithm must be selected in order to efficiently employ
the SDI (through cloud managers such as OpenStack [14], OpenNebula [15] and Euca‐
lyptus [16]) in order to minimize the reserved physical resources and the implicit oper‐
ating cost. In practice, VMs reserve virtual shared CPU and shared storage, whereas the
only physical resource reserved in a stringent way is the server physical memory. Thus,
the problem of optimal VM allocation across the network of synergetic DCs is reduced
to that of allocating the aggregate server memory to VMs, based on their forecasted load
and availability.

The above problem can be reduced to a “bin packing” problem [17] and has been
formally formulated by the authors in [18]. In particular, “the problem of VM allocation
can be considered as a “bin packing” problem, where given a finite set U = {u1,u2,
…,un} of “items”(i.e. VMs) and a rational “size” (i.e. memory) s(u) for each item u ∈
U a partition of U into disjoint subsets U1,U2,…,Uk must be found such that the sum of
the sizes of the items in each subset Ui is no more than a respective “bin size”(i.e. server
memory) Si and such that k is as small as possible. Thus, VMs of memory s need to be
allotted to servers of memory S, while reserving the minimum number of servers,
whereas a memory granularity of 512 MB can be assumed which is a typical value
encountered in practice.”

The above problem constitutes an NP-hard problem [17], however a number of
approximation and heuristic techniques can be employed to provide solutions to the
problem. The Best Fit Decreasing Algorithm (BFD) [17] constitutes one of the best
approximation algorithms for the “bin packing” problem and it can be employed to
achieve a consolidated VM allocation. As stressed by the authors in [18] in the direction
of employing the BFD “the DC servers are indexed based on their energy-efficiency,
with energy-efficient servers being assigned a lower index. Subsequently, “items” (i.e.
VMs) are placed into “bins”(i.e. servers) in order of increasing index. As a result, energy-
efficient servers are assigned a higher priority and for instance servers of a Green Room
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are reserved first, or servers of the same DC segment are reserved prior to remote DC
servers in order to allow remote DC servers to hibernate, providing substantial energy
savings. Next, “items” in U are sorted by size and reindexed so that
s(u1) ≥ s(u2) ≥ ··· ≥ s(un). “Items” are then placed in order of increasing index, first into
the occupied “bins” of lower available capacity and then, in case they do not fit into the
occupied “bins”, or in case of a tie, “items” are placed in order of increasing index into
the lower indexed “bin” they fit.”

Thus, the documented success of the BFD approximation solution can be exploited
to initialize the search of an appropriate heuristic approach. Specifically, the above
solution is used as an initial seed to initialize the search of a Genetic Algorithm (GA)
approach [19]. The GA constitutes one of the most successful heuristics [19],
however, a number of factors hinder the convergence of GA when the latter is applied
to grouping problems such as the “bin packing” problem in hand. In particular,
grouping problems – aiming either to find a good partition of a set or better yet to
group together the members of a set - challenge the cornerstone of the GA, namely the
principal of minimal redundancy of each solution1, as different encodings and
different permutations of the groups may refer to the same solution. Also, solution
clustering into groups hinders the passing of useful (i.e. standalone) information to the
next generation through the crossover and mutation operators of the GAs [20–22].

In this course, the Grouping Genetic Algorithms (GGA) have been proposed [20]
allowing the encoding of grouping problems like the one in hand, by using groups or in
our case “bins” as the GA building blocks on which GA operators are applied. One could
envisage a GGA as a simple GA where each gene of a GAs’ chromosome corresponds
to a tuple of elements corresponding to the “items” of each “bin”, whereas the “bins”
are the building blocks evolved by the employment of the GAs. This approach alters all
GA operators significantly, however this approach outperforms the standalone GA
substantially when applied to grouping problems.

The employment of the GGA, initialized by the BFD, for the optimal VM allocation,
allows for the consolidated allocation of VMs at an intra-DC level as well as an inter-
DC level, whenever a VM consolidation is imposed by the Smart Grid operation. Thus,
the distributed application of the above optimization algorithm on DC sites, when that
is deemed necessary based on the SVR load predictions, could yield significant energy
savings as well as reliable Smart Grid operation.

In order to validate the efficiency of the proposed approach and the feasibility and
applicability of the DOLFIN approach employing solely the SDI, the preliminary results
of the optimized VM allocation are tested on our in-house micro DC and the obtained
data corroborating the substantial benefits arising from the proposed approach are
presented hereafter.

1 The principal of minimal redundancy refers to the necessary one to one relation between
each encoded solution and each member of the search space.
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4 Experimental Results

In the process of developing and fine-tuning the prediction engine and optimization
module of the DOLFIN ecosystem a number of attested scenarios were used as bench‐
mark to quantify the convergence of the developed optimization algorithms and the
accuracy of the developed prediction models. These optimized test scenarios to which
the predictive optimization converged to, were then implemented based on the SDI of
a small scale testbed, as a proof of concept, employing OpenStack for the actuation of
these scenarios. The testbed consists of 4 low consumption blade servers (less than 50 W
of energy consumption at average load, simultaneously underclocking idle cores) which
run artificial loads to emulate the operation of a commercial DC.

The performance of the implemented prediction engine is depicted in Fig. 2, where
the load (power) prediction is plotted against the real power demand values. The training
set of the prediction engine spanned two months of data. The Root Mean Squared Error
between the actual power demand values and the predicted ones is 74.3 which is consid‐
ered acceptable for our value range, granted the limited training set volume; further
training of the prediction engine is required in order to acquire more accurate results.

Fig. 2. Prediction engine performance

In the same context, Fig. 3 presents the outcome of the load optimization on the
aforementioned test setup. Specifically, under random load and granted relevant predic‐
tions from the prediction engine, the optimization component was able to reorganize the
existing load in such a way that the energy consumption dropped by approximately 15 %,
exhibiting that through proper management, the energy consumption of DCs can be
significantly lowered, to help towards assisting the operation of Smart Grids. Moreover,
when considering the ability to relocate loads to geographically distant DCs when intra-
DC optimization is unable to accommodate the load inside the DC boundaries, the coor‐
dination of DC loads with the Smart Grid demand response plans, is expected to
contribute substantially to the achievement of Smart Grid stability.
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Fig. 3. Test optimization scenario result

5 Conclusions

In this paper, a framework for achieving energy optimization in federated DCs has been
presented, employing continuous DC resources and network monitoring and scalar
optimization architectures operating at local and federated levels. In the course of mini‐
mizing the energy consumption at local DC level, we employ load optimization through
load re-allocation, coupled with near future load predictions, implemented with the help
of support vector regression techniques. The results of the prediction and optimization
processes are presented and briefly discussed, indicating significant power savings may
be achieved by employing the proposed architecture.
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