Performance Evaluation of Searchable
Symmetric Encryption in Wireless
Sensor Networks

Cristina Mufioz®™), Lucas Rocci, Eduardo Solana, and Pierre Leone

Computer Science Department, University of Geneva, Carouge, Switzerland
{Cristina.Munoz ,Eduardo.Solana,Pierre. Leone}@unige .ch,
Lucas.Rocci@etu.unige.ch

Abstract. The distributed nature of Wireless Sensor Networks leads to
the use of cloud databases that need to be protected when dealing with
sensitive content. In this context, Searchable Symmetric Encryption pro-
vides the appropriate framework to perform secure searches. This work
proposes a combination of secure indexes with Bloom Filters to efficiently
address searches in encrypted content. We evaluate the performance of
two different strategies to populate Bloom Filters in XM1000, Z1 and
TelosB wireless sensor devices: (1) we first consider four cryptographic
hash functions using the double hashing technique and truncating mes-
sage digests; (2) we then select five symmetric encryption algorithms and
two fast hash functions also with double hashing. We conclude that the
best strategy for securing indexes is AES plus a fast FNV hash function
and double hashing.

Keywords: Searchable Symmetric Encryption - Wireless Sensor
Networks - Bloom Filters + Cloud Storage

1 Introduction

The ubiquitous model of the Internet of Things (IoT) leads to manage informa-
tion through secure cloud systems. In the Database as a Service (DBaaS) model
data is stored and managed in the cloud. This model assumes that documents
are securely stored and only accessible to authorized users. In this process the
database provider is usually considered as an “honest but curious” adversary
with respect to the documents stored. For example, one can imagine a DBaaS
for a Wireless Sensor Network (WSN) used in a Smart City that manages sensi-
tive citizens data such as physical characteristics, location, actions, etc. In this
scenario, only public security forces should access this private information.

Searchable Symmetric Encryption (SSE) offers a solution to search for specific
encrypted documents on a database. In this context, the main challenge is to
prevent the database provider from extracting relevant information related to
the search process.

Secure indexes based on Bloom Filters (BFs) [4,10,14,17,19,20] are generally
chosen because of their efficiency. Since our architecture relies on performance
constrained devices, we have considered that BFs constitute the ideal candidate.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.) IoT 360° 2015, Part I, LNICST 169, pp. 40-51, 2016.
DOI: 10.1007/978-3-319-47063-4_4

Performance Evaluation of Searchable Symmetric Encryption in WSNs 41

A BF [18] is defined as a probabilistic data structure that efficiently manages
membership of a certain number of elements. Secure indexes based on BF's use
cryptographic hash functions to add elements to the filter.

The aim of this research is to improve the construction of indexes in terms of
security and performance. We focus on the performance evaluation of different
strategies to securely populate BF's using well-known cryptographic algorithms.
This means that the results of our research are valid for all methods that use
secure indexes and trapdoors based on BFs in a WSN.

We compare the performance of mote devices in terms of ROM, RAM, energy
and execution time using two different strategies:

— First, we evaluate four widely used cryptographic hash functions that are
directly applied to keywords in order to fill in BFs in a secure way.

— The second strategy relies on encryption algorithms and fast non-
cryptographic hash functions. Keywords are first encrypted and then hashed
in order to populate BF's in an efficient manner.

Finally, we discuss the suitability of the aforementioned algorithms and their
advantages and disadvantages in terms of security.

The rest of this paper is organized as follows: Sect. 2 points out the related
work on the field. Section 3 details our methodology. Section 4 presents the results
obtained. Finally, Sect.5 summarizes our work.

2 Related Work

The first research that presents secure indexes is based on the use of BFs [4].
HMAC-SHA1 is proposed as keyed hash function but its performance is not
discussed. According to [17] this scheme is still the most secure for full searches.

Secure indexes are usually based on BFs due to their efficiency [4,10,14,17,
19,20]. In [17] a strategy to support searches that allow comparisons character
by character is presented. In [10], secure indexes based on BF's are introduced to
secure the deduplication of data in which duplicated encrypted files are removed
to improve the memory size of the cloud database. In [19] a multi-keyword fuzzy
search technique is presented. It uses a locality-sensitive hashing technique to
support the misspelling of keywords. Similarity searches based on a symbol-based
trie-traverse technique have been proposed in [20]. Moreover, in [14] a secure
anonymous database search is presented by adding a query router between data
searchers and index servers. Its purpose is to enforce an authorization before
accessing secure indexes based on BF's. In this process, the query router is not
allowed to gain data about the queries and their results.

Furthermore, there exists some research concerning the use of secure BFs in
WSNs. In [11] a technique for encrypted data aggregation is used where secure
BF's reduce transmission costs. Besides this, a method to support in-network
processing [22] while securing traffic has also been developed in WSNss.

Finally, it is remarkable to mention that lightweight block ciphers have been
evaluated in sensor motes. In [3], AES and XTEA are highlighted due to their
good performance.

42 C. Munoz et al.

3 Methodology

In this section we focus on our proposed methodology to implement SSE in
WSNs. First of all, we describe the scenario and the required processes for saving
and searching an encrypted document in a cloud database. Then, we detail how
to fill in secure indexes based on BFs using: (1) cryptographic hash functions
and (2) an encryption algorithm plus a fast hash function.

3.1 Scenario

A SSE encryption scenario requires three agents: (1) the Encrypted Database
(ED), (2) the Data Owner (DO) and (3) the Data Searcher (DS). In this paper,
we consider that agents are attached to a WSN composed of constrained devices.
This means that efficiency is essential in the communication process. Figure 1

shows the communication process to generate and retrieve data using SSE in a
WSN:

1. The first requirement is that DOs and DSs participate in a key exchange
protocol to share the same symmetric key.

2. The DO generates a document to store on the ED.

3. The document is symmetrically encrypted and an index containing relevant
keywords is generated to facilitate searches. In our case, the index is a BF
associated to the document. To prevent information leakage, index entries
should also be encrypted with a pseudo-random function as described in [4].
We then insert random 1’s in order to hide the number of keywords in the
index. Finally, the associated secure index and the encrypted document are
stored in the ED.

4. An authorized user holding the proper symmetric key generates a trapdoor to
retrieve documents associated to certain keywords. Then the secure trapdoor
is sent to the ED.

5. The ED searches for indexes that match the trapdoors and sends the associ-
ated encrypted documents to the DS.

6. The search results may include false positives but this does not constitute a
security breach since the DS only decrypts documents protected with his key.

Encrypted Database

Index

©)

2 =~
s

=
Owner

Fig. 1. SSE in Wireless Sensor Networks.

Performance Evaluation of Searchable Symmetric Encryption in WSNs 43

3.2 Cryptographic Hash Functions

For the evaluation of cryptographic hash functions we have chosen four widely
used algorithms:

MD5 (1991). MDS5 is based on a Merkle-Damgard function and produces 128
bit digests [15]. Each message block implements 4 rounds of 16 operations each
one. This cryptographic hash function is highly vulnerable to collision attacks
so that it was substituted by SHA1. Pre-image attacks are theoretically possible
but are not practical due to their high computational cost. Nowadays, it is used
as a checksum hash to verify the integrity of a file.

SHA1 (1995). SHA1 relies on a Merkle-Damgard function and produces 160
bit digests using 80 rounds [16]. It is vulnerable to collision attacks for high
computational efforts. For this reason, it was decided to substitute it for SHA2
that presents no vulnerabilities.

SHA2 (2001). SHA2 is also based on a Merkle-Damgard function and produces
224, 256, 384 or 512 bit digests [16]. Digests of 224 and 256 can use 64 or 80
rounds while the rest need 80 rounds. Pre-image and collision resistance have
been compromised for a limited number of rounds but it is still considered secure.

SHA3 (2012). SHA3 depends on a Sponge construction and produces 224,
256, 384 or 512 bit digests using 24 rounds [13]. SHA3 is a very recent algorithm
with no significant flaws so far.

Additional Methods Used. Besides the cryptographic hash functions
described above we introduce four alternative methods with the aim of improving
efficiency:

— To speed up the insertion of elements in a BF the Double Hashing technique
(DH) [9] has also been evaluated. Two initial digests hq and hq are computed.
The final hash h; is the result of an iterative linear combination of h; and ha:

h; = (h1 + i - ha)modn (1)

where n represents the hash output in N.

— Depending on the size of the BF a different number of bits is required at
the output of the hash function. To reduce the output we follow the lazy mod
mapping technique [7]. It consists on applying a modular operation to the hash
output taking the size of the filter as a parameter.

— Moreover, truncated message digests have been evaluated in order to use only
one cryptographic hash to obtain all required hashes. This method specified in
the NIST Standard FIPS 180-4 [16] proposes to take the necessary left most
bits of a digest to reduce the size of the hash output. In our case, we take the
necessary left most bits to compute as many positions as required for each
element to insert to the filter.

44 C. Munoz et al.

— Finally, since multiple hashes are required per keyword we use the symmetric
key to randomize the input of the hash function and prevent dictionary or pre-
computed tables attacks. Message Authentication Code (MAC) constructions
like the HMAC family of functions may also be considered for this purpose.

During this research we prioritized implementations adapted for processors
with a low number of bit registers. In the case of cryptographic hash functions
we did not find implementations designed for processors of 16 bits. MD5, SHA1
and SHA2 are adapted for 32 bit registers while SHA3 is adapted to 64 bit
registers. Furthermore, SHA2 and SHA3 use 256 bit key lengths. It is remarkable
to mention that there are a limited number of implementations of SHA3 due to
its novelty.

3.3 Encryption Algorithms and Fast Hash Functions

As far as we know, no previous research based on applying SSE using BF's has
proposed the use of an encryption algorithm plus a fast hash to fill in the filter.
We propose to assess five widely used cryptographic algorithms with two different
fast hash functions:

AES (1997). Today AES is the de facto standard [5]. It is an iterative block
cipher based on a substitution-permutation network. It works with blocks of 128
bits and no major vulnerability has been unveiled so far. The number of rounds
depends on the size of the key: 128/192/256 bit keys require 10/12/14 rounds
respectively.

MISTY1 (1995). MISTY1 is a secure block cipher which uses a nested Feistel
Network of a multiple of 4 rounds [12]. Recursively, each of these rounds uses a
3 round Feistel Network. It works with 64 bit blocks and sizes of 128 bit keys.

PRESENT (2007). PRESENT relies on a substitution-permutation network
of 31 rounds for block sizes of 64 bits and key sizes of 80/128 bits [2]. PRESENT
is considered secure although it has partially been broken for 26 rounds.

SKIPJACK (1998). SKIPJACK was designed to provide security on phones
[6]. It is a block cipher that uses an unbalanced Feistel Network of 32 rounds
and 80 bit keys. The most successful attack breaks 31 rounds but a full attack
is not known to date. NIST recommends to avoid its use due to its weak key
length.

XTEA (1997). XTEA is a block cipher that uses a 64 rounds Feistel Network
and blocks of 64 bits with a 128 bit key [21]. Up to date, 36 rounds have been
broken but is considered as secure in its full-fledge version.

Performance Evaluation of Searchable Symmetric Encryption in WSNs 45

FNV (1991). FNV is a non-cryptographic hash function based on an offset
and a chosen prime that depends on the length of the output [8]. It is based on
a Merkle-Damgard function that works byte by byte to obtain 32, 64, 128, 256,
512 or 1024 bit outputs.

Murmurhash3 (2010). This non-cryptographic hash function is based on a
block inter-mixing [1]. Input bits are divided in blocks and simple operations on
the block mix ensure that all blocks are affected by the precedent blocks. Bit
outputs of 32 or 128 are allowed.

Additional Methods Used. For reducing the computation of encryption algo-
rithms the double hashing technique has been used. In addition to this, to reduce
the hash output length the lazy mod mapping technique has been applied. All
these techniques are detailed in Sect. 3.2. Moreover, fast hash functions use dif-
ferent offsets and seeds to obtain different hash outputs.

In the case of AES we use a version designed for 8 bit registers in ECB mode
with a 128 bit key. Besides, PRESENT uses a 80 bit key and is also adapted
to 8 bits registers. SKYPJACK is adapted to 16 bit registers and the rest of
algorithms to 32 bit registers. Moreover, fast hash functions used work with 32
bit lengths at the output.

4 FEvaluation

A real demo using wireless sensor devices for SSE has been implemented. Secure
indexes and trapdoors based on BF's have been executed on motes which use the
low power consumption IEEE802.15.4 standard at 2.4 GHz. The sensors assessed
are Advanticsys XM1000, Zolertia Z1 and Crossbow TelosB. The evaluated algo-
rithms have been programmed in C using the open source OS Contiki 2.6.

In our experiments 25 secure indexes of 128 bit positions are created. 10
elements of a few tens of characters are used to fill in each filter. From these
elements 7 are used as real keywords for indexing the content of the document
and the rest are chosen randomly to blind the filter. With these parameters we
select an optimum number of 9 different hashes per keyword.

The parameters measured correspond to ROM (kB), RAM (kB), energy con-
sumed by the CPU (uJ) and execution time (ms). As the following results show,
the energy consumed by the CPU is proportional to the execution time.

4.1 Cryptographic Hash Functions

As detailed in Sect. 3.2 four cryptographic hash functions have been evaluated. If
message digests are not truncated k hash functions are needed for each element,
where k is the optimum number of hashes that in our case is 9. When truncating
messages only the computation of one cryptographic hash function is needed
for each element. Moreover, in all cases we considered the DH to evaluate the
improvement achieved.

46 C. Munoz et al.

=ROM (B) =RAM (B) Energy (1)) m=Execution (ms) =ROM (B) =RAM (B) wEnergy(uJ) wExecution (ms)
350000
g 300000 I
£ 25000 I
2 200000 r
£ 150000 ‘ i
5 100000 . r
50000 i 1 = [3o rIzIoIzIeIzIeIzIo I
o 1 S TR TR
I5353535555558553583 23 23g 23§ 3§ 3¢
E ¢ £ £ £ £ : % H 2 H 2 H
KMD5 1MD5 KSHA1 1SHA1 kSHA2 1SHA2 KSPAA3 1SHA3 AES MISTY1 PRESENT SKIPJACK XTEA
a) Crypto hashes on XM1000 b) Encryption alg. plus fast hash on XM1000
=ROM (B) =RAM (B) Energy (uJ) m=Execution (ms) =ROM (B) =RAM (B) w=Energy(uJ) wExecution (ms)
350000 350000
g 300000 I g 300000
E 25000 g 25000
b ‘£ 200000
;5 200000 H H 150000
g 150000 ‘ ‘ $ 100000
100000 i ‘ 50000 = = =
| Smm 0d
o I ‘ ‘ 5595253525 3525882593
0 - “3ESHIESCIES-IEESZES
55555 c5cddcdadds £23¢g 23¢g 23 232 £232¢
§ § 5§ § § § § § 5 5 5 E 5
s 2 & 2 £ 5 2 £ 2 2 2 H H
KMD5 1MD5 KSHA1 1SHA1 kSHA2 1SHA2 kSPA3 1SHA3 AES MISTY1 PRESENT SKIPJACK XTEA
c) Crypto hashes on Z1 d) Encryption alg, plus fast hash on Z1
=ROM (B) =RAM (B) Energy (uJ) m=Execution (ms) =ROM (B) =RAM (B) =Energy(uJ)) m=Execution(ms)
350000 350000
é 300000
E
250000
£
€ 200000
€ 150000
100000 =
s0000 1]} - —— -
iii iii 5555353525552 53525%5
0 = CIESEIESCIEGEIESTIES
5553555558353835a8348 £33 3¢ 23 E3 23
2 2 2 2 2 2 2 2 E) ES E} 2 E)
KMD5 1MD5 KSAAT 1SHA1 kSHA2 1SHA2 KSPA3 1SHA3 AES MISTY1 PRESENT SKIPJACK XTEA
e) Crypto hashes on TelosB f) Encryption alg. plus fast hash on TelosB

Fig. 2. Overall performance evaluation using (a, c, €) cryptographic hash functions
and (b, d, f) encryption algorithms with a fast hash function.

Figure2a shows the overall performance when using XM1000 devices.
Figure 2¢ shows the results for Z1 motes and Fig. 2e for TelosB.

TelosB motes offer the poorest performance in all cases. XM1000 and Z1
sensors show similar performance with slightly better results in the first case.

When message digests are not truncated, the DH technique improves the
performance of the system. If digests are truncated the performance is very
similar but slightly better results are obtained whether the DH is not used.

In terms of overall performance we observe that truncated MD5, SHA2 and
SHAT1 are the best options for XM1000. Z1 and TelosB present a ROM overflow
problem for SHA1, so only truncated MD5 and SHA?2 functions are considered.
SHAS3 displays a poor performance when message digests are not truncated. In
the case of TelosB we decided not to show the execution time for & SHA3 to
improve the legibility of the figure. All these options are discussed in detail in
Sect. 4.3.

Performance Evaluation of Searchable Symmetric Encryption in WSNs 47

4.2 Encryption Algorithms and Fast Hash Functions

In Sect. 3.3 we presented the five cryptographic algorithms used for the encryp-
tion of keywords and the two fast hashes required to insert them to a BF. In this
section we have evaluated all these techniques plus the improvement obtained
when using DH.

Figure 2b shows the overall performance when evaluating XM1000 devices.
Figure 2d shows the results for Z1 motes and Fig. 2f for TelosB. At first sight, if we
compare these results with the ones obtained for cryptographic hash functions
we observe that the strategy of using encryption algorithms with a fast hash
function improves the performance.

As in the previous section TelosB motes offer poor performance compared to
the other two and XM1000 are slightly better than Z1.

In all cases the DH offers just marginally better results. Furthermore, similar
overall results are obtained when using FNV and Murmurhash3. Concerning the
cryptographic algorithms PRESENT offers the worst results for all devices. For
this reason its evaluation is discarded in Fig. 3.

Figure 3a details the use of ROM. In all cases Murmurhash3 requires more
ROM than FNV. Moreover, SKIPJACK and XTEA need less memory than the
other options while MISTY1 requires more than the others. Besides, it can be
observed that Z1 devices require more ROM than the other two.

The results for RAM are shown at Fig. 3b. Similar results are obtained in all
cases except for AES that requires slightly more RAM. TelosB motes offer the
poorest performance in this domain.

In terms of energy and execution (see Figs. 3¢ and d) all algorithms obtain
better results when using Murmurhash3 except in the case of AES that improves

—+—XM1000 =—m=71 —s—TelosB

35000 6000
34000
33000 |

_ 32000 1

2 31000 |

= 30000 1

& 20000
28000
27000
26000
25000 3000

—e—XI1000 =m=71 TelosB

Murmurd+DH
FNY
FNV+DH
Murmur3
Murmurd+DH
Murmurd
Murmurd+DH
Murmurd
Murmurd+DH
Murmur3+DH
FNV
FNV+DH
Murmur
Murmur3+DH
FNV
FNV+DH
Murmur
Murmur3+DH
FNV+DH
Murmur
Murmur3+DH

AES MISTY1 SKIPJACK XTEA AES MISTY1 SKIPJACK XTEA
a) ROM b) RAM
e XM 1000 w=iliemZ 1 TelosB =—+—=XM1000 =—==71 —w—TelosB

N \ 4500 {-A S

Execution (ms)

8w
gz
-
B g
g g

Murmur3+DH
FNV+DH
Murmur3

Murmur3+DH
FNV
FNV+DH
Murmur3
Murmur3+DH
FNV
FNV+DH
Murmur3
Murmur3+DH
Murmurd+DH
Murmur3+DH4
FNV.
FNV4DH
Murmur3
Murmurd+DH
FNV.
Murmurd+DH

AES MISTY1 SKIPJACK XTEA AES MISTY1 SKIPJACK XTEA

c) Energy d) Execution

Fig. 3. Performance evaluation of the best cryptographic algorithms.

48 C. Munoz et al.

its execution when using FNV. MISTY1 and XTEA offer the best results when
used with Murmurhash3 and the DH.

Taking into account the overall performance, we state that AES, MISTY1,
SKIPJACK and XTEA with FNV and DH are the best options. As in the pre-
vious section, all these strategies are discussed in detail in Sect. 4.3.

4.3 Best Strategies

In this section we discuss the practical use of the best cryptographic hashes
and encryption algorithms plus a fast hash function. The results in terms of
overall performance for XM1000, Z1 and TelosB devices (see Figs. 4a—c) show
that encryption algorithms plus a fast hash function using the DH provide better
results.

Figure ba shows the ROM usage for the best strategies. It is remarkable to
mention that SHA2 requires a similar memory amount than encryption algo-
rithms. The results obtained for RAM (see Fig. 5b) indicate that all strategies
require comparable resources. Finally, it can be stated that energy and execution

=ROM (B) =RAM (B) = Energy(u)) =Execution (ms)

60000

Overall performance
28w o2 @
£ 288 &8

0
FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH
AES MISTY1 SKIPJACK XTEA 1MD5 1SHA1 1SHA2

a) XM1000

=ROM () =RAM (B) = Energy(u)) =Execution (ms)

60000

Overall performance
208w o&2 @
£ 288 8

0 o
FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH
AES MISTY1 SKIPJACK XTEA 1MD5 1SHA1 1SHA2

b) Z1

=ROM (B) =RAM (B) =Energy(u)) =Execution (ms)

60000

Overall performance
4 m ow &2 o
E 2888 8

FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH
AES MISTY1 SKIPJACK XTEA 1MDS 1SHAT 1SHA2

c) TelosB

Fig. 4. Overall performance evaluation of the best strategies.

Performance Evaluation of Searchable Symmetric Encryption in WSNs 49

——XM1000 —m—Z1 TelosB ——XN1000 —m=Z1 —+—TelosB
55000 6000

50000 5500

a
45000 =
/ \ = s000
40000 \

35000

ROM (B)

e Q — \\ \/' ™ ° =='=“H/7
25000 +—— . > 3500
FNV-DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH
AES MISTY1 SKIPJACK XTEA 1MD5 1SHA1 1SHAZ AES MISTY! SKIPJACK XTEA 1MDS 1SHAT 1SHA2
a) ROM b) RAM
——XH1000 —=—Z1 Telos ——XM1000 —8—Z1 —a—TelosB
12000
12000
11000
10000 5 o
€ o0
8000 § swo

Energy (1LJ)
u
o
g

X 6000 ' 4

6000)
. /// o ———
2000 - zmu "M /

— 000
FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH FNV+DH FNV+DH FNV+DH FNV+DH NonDH NonDH NonDH
AES MISTY1 SKIPJACK XTEA 1MD5 1SHA1 1SHA2 AES MISTY1 SKIPJACK XTEA 1MD5 1SHA1 1SHA2

c) Energy d) Execution

Fig. 5. Performance evaluation of the best strategies.

time (see Figs. 5¢ and d) required is higher for SHA2 and SHA1 while remains
quite uniform in other cases.

In terms of security, we evaluate the suitability of the combination of encryp-
tion algorithms and a fast hash function. The selection of SKIPJACK is dis-
carded due to its weak key length. MISTY1 offers poorer performance results
when compared to AES and XTEA and with no security advantage, so we do not
recommend its use either. The other encryption algorithms: AES and XTEA are
considered secure. Nevertheless, AES is constantly subject to extensive analysis
from the cryptographic community and consequently is considered as a highly
resistant algorithm. For this reason, even if it displays a slightly worse behav-
iour than XTEA on sensors, we opt for the use of AES plus FNV and DH for
constructing secure indexes and trapdoors.

If we compare the three cryptographic hash functions we observe that SHA1
offers the poorest performance. MD5 and SHA2 offer similar results but still
they are paradoxically less performant than encryption algorithms. Concerning
security, SHA2 is secure and MD5 is not collision resistant. This weakness does
not affect security in our application due to the fact that collision attacks are
typically used to impersonate someone but cannot guess the plaintext. Neverthe-
less, it must be taken into account that a theoretical pre-image attack has been
discovered for MD5 and it is a matter of time before an attack that breaks this
property in a reasonable amount of time is found. For this reason, we consider
a truncated SHA2 without the DH the best option between all cryptographic
hash functions.

Finally, we compare the best solution for each strategy defined: (1) AES plus
FNV and DH and (2) a truncated SHA2 without the DH. We observe (see Fig. 4)
that the first solution displays better results.

50 C. Munoz et al.

To summarize, we recommend the use of AES plus a fast FNV hash function
using the DH due to its good performance and high level of security.

5 Conclusion

The aim of this research is to evaluate different strategies to allow the imple-
mentation of Searchable Symmetric Encryption techniques using wireless sensor
devices. In this context, Bloom Filters are used to secure indexes and trapdoors
related to encrypted documents saved on a cloud database.

The performance of mote devices is measured and compared in terms of
ROM, RAM, CPU consumption and execution time.

Two different strategies are assessed. First of all, four well-known crypto-
graphic hash functions are evaluated to save keywords in a filter. Furthermore,
five widely used symmetric encryption algorithms combined with two different
fast non-cryptographic hash functions are analyzed.

Our results show that the combination of an encryption algorithm with a
fast hash function offers better results than using a cryptographic hash function.
Based on our experiments, due to its higher performance on sensors and stronger
level of security we recommend the use of AES plus FNV and the Double Hashing
technique.

As future work we envision a strategy that allows the creation of secure
indexes according to a certain entropy.

Acknowledgment. This work has been financially supported by the Swiss Hasler
Foundation in the framework of the POPWIiN project.

References

1. Appleby, A.: murmurhash3 (2011)

2. Bogdanov, A.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P.,
Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31

3. Cagzgorla, M., Gourgeon, S., Marquet, K., Minier, M.: Survey and benchmark of
lightweight block ciphers for MSP430 16-bit microcontroller. Secur. Commun.
Netw. 8(18), 3564-3579 (2015). http://dx.doi.org/10.1002/sec.1281

4. Eu-Jin, G.: Secure indexes. Technical report (2004). http://crypto.stanford.edu/
eujin/papers/secureindex/

5. FIPS PUB 197, Advanced Encryption Standard (AES), National Institute of Stan-
dards and Technology, US Department of Commerce, November 2001. http://csrc.
nist.gov/publications/fips/fips197 /fips-197.pdf

6. FIPS PUB 185, Escrowed Encryption Standard (EES). Federal Information
Processing Standards Publication 185 (1994)

7. Fowler, G.: Fowler/Noll/Vo (FNV) hash (1991). http://isthe.com/chongo/tech/
comp/fnv

8. Fowler, G., Noll, L.C., Eastlake, D.: The FNV non-cryptographic hash algorithm.
Internet Draft (2015)

http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1002/sec.1281
http://crypto.stanford.edu/eujin/papers/secureindex/
http://crypto.stanford.edu/eujin/papers/secureindex/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://isthe.com/chongo/tech/comp/fnv
http://isthe.com/chongo/tech/comp/fnv

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Performance Evaluation of Searchable Symmetric Encryption in WSNs 51

Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
bloom filter. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
456-467. Springer, Heidelberg (2006)

Li, J., Chen, X., Xhafa, F., Barolli, L.: Secure deduplication storage systems with
keyword search. In: 2014 IEEE 28th International Conference on Advanced Infor-
mation Networking and Applications (AINA), pp. 971-977, May 2014

Li, T., Wu, Y., Zhu, H.: An efficient scheme for encrypted data aggregation on
sensor networks. In: IEEE 63rd Vehicular Technology Conference, 2006. VT'C 2006-
Spring, vol. 2, pp. 831-835, May 2006

Ohta, H., Matsui, M.: A description of the MISTY1 encryption algorithm. RFC
2994, November 2000

Pub, N.: Draft FIPS pub 202: SHA-3 standard: permutation-based hash and
extendable-output functions. Federal Information Processing Standards Publica-
tion (2014)

Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database
search. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
pp. 115-126. ACM (2009)

Rivest, R.: The MD5 message-digest algorithm. Internet Request For Comments
1321 (1992)

Standard, N.S.H.: Federal information processing standards publication fipps 180—
4 (2012)

Suga, T., Nishide, T., Sakurai, K.: Secure keyword search using bloom filter with
specified character positions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y.
(eds.) ProvSec 2012. LNCS, vol. 7496, pp. 235-252. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33272-2_15

Tarkoma, S., Rothenberg, C., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. Commun. Surv. Tutor. IEEE 14(1), 131-155 (2012). First
Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: 2014 IEEE Conference on Computer
Communications, INFOCOM 2014, Toronto, 27 April-2 May 2014, pp. 2112-2120
(2014). http://dx.doi.org/10.1109/INFOCOM.2014.6848153

Wang, C., Ren, K., Yu, S., Urs, K.: Achieving usable and privacy-assured similarity
search over outsourced cloud data. In: Proceedings of IEEE INFOCOM, 2012, pp.
451-459, March 2012

Wheeler, D., Needham, R.: Tea extensions, also correction to XTEA, October 1998.
www.ftp.cl.cam.ac.uk/ftp/users/djw3

Wu, Y., Ma, D., Li, T., Deng, R.: Classify encrypted data in wireless sensor net-
works. In: IEEE 60th Vehicular Technology Conference, VT C-Fall, vol. 5, pp. 3236—
3239, September 2004

http://dx.doi.org/10.1007/978-3-642-33272-2_15
http://dx.doi.org/10.1109/INFOCOM.2014.6848153
www.ftp.cl.cam.ac.uk/ftp/users/djw3

	Performance Evaluation of Searchable Symmetric Encryption in Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Scenario
	3.2 Cryptographic Hash Functions
	3.3 Encryption Algorithms and Fast Hash Functions

	4 Evaluation
	4.1 Cryptographic Hash Functions
	4.2 Encryption Algorithms and Fast Hash Functions
	4.3 Best Strategies

	5 Conclusion
	References

