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Abstract. A considerable amount of research activities deals with Internet of
Things and Smart Cities, by leveraging the continuously growing usage of cloud
computing solutions and mobile devices. The pervasivity of mobiles also enables
the Mobile Crowd Sensing paradigm, which aims at using mobile-embedded
sensors to ease the monitoring of multiple phenomena. The combination of these
elements has recently converged into a new sensing model: Sensing as a Service
(S2aaS), which is expected to offer novel monitoring approaches in the next years.
In this paper, we propose a platform to pave the way for applying S2aaS in urban
scenarios by considering both noise and electromagnetic field exposure. Design
and implementation choices are discussed, along with privacy-related issues and
preliminary monitoring tests conducted at a city in Southern Italy, in order to
demonstrate the suitability of our approach.

Keywords: Mobile crowd sensing · Sensing as a service · Noise monitoring ·
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1 Introduction

Both the Internet of Things (IoT) and the Smart Cities (SCs) terms are nowadays largely
adopted: the former one refers to technological advancements that offer unprecedented
levels of connectivity to both users and machines, whilst the latter one identifies urban
scenarios where city problems are tackled with novel IT solutions. They both mostly
leverage the enormous diffusion of Cloud Computing (CC) and mobiles (e.g., smart‐
phones, tablets), boosted by the mobile broadband (MBB) technology, which currently
represents one of the most dynamic market segments worldwide. Higher data rates, more
reliable coverage and improved Quality of Service determined a penetration rate of 47 %
for MBB and an overall network coverage of 69 % of the world population (89 % if we
consider the urban population only) for the year 2015 [1]. The trend for the year 2020
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envisions that worldwide mobile subscriptions will amount 9.2bn (6.1bn for smart‐
phones) [1] while currently they are 7.1bn (2.6bn for smartphones). The expected
number of connected devices will skyrocket, reaching nearly 30bn entities in 2020.

In this highly dynamic scenario, a new paradigm is emerging, known as Sensing as
a Service (S2aaS) [2], which aims at solving typical SC challenges by exploiting CC and
IoT infrastructures and by offering multiple sensing capabilities in order to satisfy heter‐
ogeneous sensing requests coming from different geographical areas. Mobiles, along
with their rich set of embedded (or pluggable external) sensors and their high pervasivity,
represent at the moment the most suitable way to offer such sensing capabilities on a
large scale without revolving to traditional Wireless Sensor Networks (WSNs)
approaches. Therefore, S2aaS is firmly rooted on the Mobile Crowd Sensing (MCS)
paradigm [3], which allows collecting data directly from mobiles and overcomes typical
limitations of WSNs (thanks to wider coverage areas, high number of deployable nodes,
more reliable communication and connectivity). Users can choose monitoring modali‐
ties (participatory sensing) or delegate their mobiles to send data automatically (oppor‐
tunistic sensing). Both the approaches can be combined properly in S2aaS to satisfy
different needs, such as directly requesting mobile owners to perform measurements or
simply sending automatic sensing tasks to mobiles in a given area.

Urban scenarios offer a promising arena for MCS applications, where citizens can
consume/provide information about specific situations occurring around them. We
believe that this can improve the S2aaS paradigm, that we can define as Urban Mobile
Sensing as a Service (UMS2aaS) to point out how it is deeply tailored on SCs challenges
and issues. Citizens could be dynamically scattered across huge areas with multiple
sensing purposes and they could acquire contextual awareness from the surrounding
environment [4]. Similarly, they could be engaged in collaborative, large-scale moni‐
toring experiences that widen the scope of traditional sensing campaigns [5].

In this paper, we propose a platform capable of paving the way for the deployment
of UMS2aaS solutions by: (1) identifying noise and electromagnetic (EM) monitoring
as suitable urban sensing scenarios; (2) proposing a mobile app for gathering data from
sensors and optional users’ comments; (3) proposing a cloud-based data management
system; (4) estimating platform data growth.

As for a technical point of view, we designed, developed and tested (at a city in
Southern Italy) a system prototype that gathers data from mobiles and sends them to a
context broker application, which forwards them to a Hadoop-based server farm. Then,
a complete ETL (Extract-Transform-Load) pipeline elaborates measurements in a Data
Warehouse (DWH) system: they are aggregated w.r.t. sensing location, device type,
timestamp, serving network type/provider. These functionalities are achieved by
merging a set of components from FIWARE middleware [6] with our platform.

The paper is organized as it follows: Sect. 2 briefly examines MCS paradigm and
our research purposes; the proposed platform is detailed in Sect. 3; discussions about
the platform prototype are presented in Sect. 4; Section 5 enlists conclusions.
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2 State-of-the-Art and Research Purposes

MCS is the enabling element for S2aas and UMS2aaS paradigms and it actually helps
addressing multiple urban monitoring issues such as traffic and road safety [3]; air [7]
and water [8] pollution; noise [9]; flooding [10]; earthquakes [11], large-scale events
[12]. Let us now consider the two identified monitoring scenarios for our research. As
for noise monitoring, the majority of MCS applications are for personal use only: they
mimic Sound Level Meters (SLMs) interfaces and allow users to check how loud much
their surrounding environment is (e.g., Advanced Decibel Meter1, Sound Meter Pro2).
However, they do not provide data aggregation on a geographical/temporal basis. Very
few research works address urban noise mapping, such as the “Ear-Phone” project [9]
where smartphones are used to predict outdoor sound levels or the “2Loud?” project [13]
that uses iPhones to assess nocturnal indoor noise near highways in Australia.

Conversely, a comparable diffusion of MCS solutions for EM field level assessment
is not yet available. The majority of them only refers to Wi-Fi indoor coverage analysis
[14] or outdoor Access Points (APs) localization [15], with very few proposals consid‐
ering 3G/4G systems, specifically tailored to evaluate traffic data for network operators
rather than users [16] or quantifying signal strength for single devices [17].

MCS-based noise and EM monitoring currently suffer from a series of limitations:
(1) absence of functionalities tailored to city managers for improving citizens’ life
quality; (2) users’ involvement as mere data collectors, without providing them with
educational outcomes or trying to raise awareness; (3) lack of extensive monitoring
purposes. Our platform aims at filling these gaps. Firstly, we want to increase users’
awareness about phenomena under observation by adding educational contents in the
mobile app. Secondly, we aim at complying with S2aaS by adopting proper architectural
design solutions and a general-purpose data modelling approach, easily customizable
for different sensing scenarios. Thirdly, our platform will act as a preliminary, low-cost,
large-scale and sufficiently accurate monitoring tool for locating areas with potential
pollution risks where more accurate sensing campaigns can be performed.

We referred to noise and EM monitoring to test our platform, since European citizens
are particularly concerned about these topics. Urban noise is considered one of the most
relevant factors of life quality condition worsening [18] (due to congested roads, high-
traffic, wrong or obsolete urban planning) and still very few interventions are made by
city managers and local administrations to reduce citizenship’s noise exposure [19].
Several scientific research works examining the correlations between health effects and
noise enforce the necessity of proper monitoring, since noise exposure may determine
progressive hearing losses, stress, distraction, sleep fragmentation, socio-behavioral
changes, hypertension and other long-term or chronic diseases [20].

1 https://itunes.apple.com/us/app/advanced-decibel-meter/id595718101?mt=8.
2 https://play.google.com/store/apps/details?id=com.soundmeter.app&hl=it.
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Similarly, EM pollution concern is due to the increasing number of base stations that
are installed across our cities. However, whilst citizens can perceive quite easily their
exposure to noise by referring to the “loudness” of the surrounding emitting sources,
the exposure to EM fields is even more difficult to be evaluated. Despite this inherent
complexity, and although no scientific research works have yet determined a direct
correlation between EM fields and medium/long-term health effects, public opinion is
becoming more and more sensitive to this problem [21]. From a monitoring point of
view, whilst mobile-embedded microphones can provide sufficient accuracy in assessing
noise levels, EM fields cannot be sensed so easily: mobile internal antennas provide
neither broadband metering nor a direct quantification of the effective electric field levels
in a given point (they can assess the received signal strength from their serving cell).
Therefore, we performed an accurate selection of the physical quantities under obser‐
vation and we introduced some error-mitigation policies (Subsect. 4.2).

3 The Proposed System

3.1 Adopted Quantifiers for Noise and Signal Strength Exposure

Our system provides both noise and signal strength opportunistic measurements. Noise
measurements can be also achieved in a participatory way. As for the noise exposure
quantification, we adopted the well-known A-weighting scale, which measures the
Sound Pressure Level (SPL) in units of dB(A) [22] and allows assessing the dependence
of perceived loudness w.r.t. frequency. The SPL is an instantaneous measurement,
therefore actual noise regulations require to consider also the Equivalent Sound Level
LEQ(T) [22] quantity to cope effectively with sounds varying in time and having different
durations. The LEQ(T) averages, in dB(A), SPL values measured during a given time
window T (which ranges typically from 30 s to 24 h), thus smoothing spikes and outliers.
Despite mobile-embedded microphones differ from professional sound metering equip‐
ment due to a series of limitations (e.g., optimization for voice reception rather than
environmental noise; reduced sensitivity; heterogeneous usage conditions, etc.), several
recent studies demonstrated the effectiveness of MCS applications for noise monitoring
scenarios, by assessing mismatches between ± 1.5 dB and ± 5 dB [23].

Signal strength measurements estimate the power level received by mobile antennas
and can be used as a quantifier for electric field exposure in the range 0.9-2.4 GHz, even
if they are not as accurate as broadband field probes. For both UMTS and LTE networks,
we refer to the RSSI (Received Signal Strength Indicator) quantity [24], which expresses
in dBm the total received power over the carrier frequency. The RSSI includes: signals
from the co-channel serving cell, interferences from non-serving neighboring cells,
thermal noise, etc. However, each mobile is able to provide RSSI from just its serving
network provider, therefore RSSI is always a portion of the overall signal power avail‐
able in a given location (since signals from other providers are also present but not sensed
by that mobile) and this casts the need of post-processing analyses (Subsect. 3.3). Addi‐
tionally, we refer to RSRP (Reference Signal Received Power), for both UMTS and
LTE. It represents the linear average over the power contributions in Watt of the resource
elements carrying cell-specific reference signals along carrier frequency (therefore
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RSRP is always lower than RSSI). RSRP expresses, in ASU (i.e., Arbitrary Strength
Unit, which is an integer value proportional to the received signal strength), the contri‐
bution of the pilot channels compared to RSSI.

3.2 Data Modeling

Data coming from sensors are multidimensional [25], thus a typical solution for dealing
with them is to follow a DWH approach [26], according to which data are processed in
an ETL pipeline, thus allowing us to clean, transform and store measurements before
aggregating and making them available to final users. We adopted the Dimensional Fact
Model (DFM) [26], which is a graphical conceptual model based upon the fact entity
(i.e., any concept evolving in time, relevant to decision-making processes). We identified
two facts: noise (Fig. 1A) and signal strength measurements (Fig. 1B). Facts (the central
rounded boxes) are described qualitatively by fact attributes and quantitatively by fact
measures (i.e., numerical properties or calculations, enlisted in the bottom part of the
fact). Noise fact measures are SPL and current/max/min/average LEQ(T), both in dB(A).
Similarly, signal strength fact measures are RSRP value (in ASU) and current/max/min/
average RSSI value (in dBm). Each analysis coordinate of a fact is called a dimension
and it consists of several dimensional attributes organized as a directed tree departing
from the fact (the attributes are the circles connected by lines to the fact; the dimension
is the root circle). Dimensional attributes qualify the finite domain of their dimension
along with its different degrees of granularity (e.g., the temporal dimension can vary
from seconds to days, weeks, months; a product is described by its name, series, brand,
etc.). The dimensions shared among multiple facts are the conformed hierarchies: time
(timestamp, date/month/year); position (latitude, longitude, town, province, region,
country); sensor type (external or embedded); device type (model and brand) and outlier
condition. The device type also stores the IMEI (International Mobile Equipment Iden‐
tity) code, which univocally identifies each mobile. The signal strength fact also has the
following dimensions: MNC (Mobile Network Code, i.e. the network provider) and
network (e.g., GSM, UMTS, LTE). The noise fact also has an optional dimension

Fig. 1. DFM representation: noise (on the left) and signal strength (on the right) measurements.
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representing user’s annotations about the source (e.g., type, annoyance, distance, etc.).
Unit of measurement is the descriptive attribute (depicted as a simple line departing
from the fact) for both the facts.

3.3 Platform Architecture and ETL Pipeline

Our platform consists of a mobile sensing app and of a cloud-based system tasked to
data management. The app works on Android mobile devices (and exploits Android 4.2
APIs3; the app mimics a professional SLM user interface and collects peak, average and
current values of SPL and LEQ(T) on customizable temporal windows, as required by EU
and Italian noise regulations. It also collects RSSI and RSRP values that assess the power
of the signal received by the mobile. Measurements are stored locally (short-term
history) and sent to the cloud-hosted system for data aggregation and filtering. The data
brokering functionality is achieved by using Orion4, a Generic Enabler (GE) from
FIWARE middleware [6] that provides publishing and subscribing operations on
collected data. Another FIWARE GE, Cosmos5, offers the HDFS-based persistent
storage (but other solutions are under examination at the moment). Orion data are
persisted in Cosmos thanks to the FIWARE Cygnus6 connector. Figure 2 depicts the
proposed three-layer logical architecture. The first layer consists of non-persistent sensor
data storage on mobiles (implemented via SQLite), of persistent storage on the cloud
(implemented via Apache Hive) and of relational DBs for law regulations, device tech‐
nical specifications and administrative divisions. The second layer has context-
brokering capabilities for managing multiple sensors as well as data filtering (thanks to
Pentaho CE7, a freeware ETL application), integration and reporting functionalities. The
third layer offers a Web app for accessing data reporting and integration results. Mobiles
and a limited number of fixed monitoring stations represent data sources. We also
developed a Web app for data visualization purposes, according to requirements elicited
from users (i.e., city managers, citizens, students).

The ETL pipeline is responsible for data management, outlier identification and
removal process as well as for the RSSI aggregation of measurements from mobiles
served by different network providers but located in the same area in a relatively short
time window. By doing so, it is possible to achieve a more realistic evaluation of the
overall received power in a given area, since each mobile is able to quantify only the
RSSI provided by its serving network operator.

3 Android 4.2 APIs (Level 17): http://developer.android.com/about/versions/android-4.2.html.
4 Orion: http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-

broker.
5 Cosmos: http://catalogue.fiware.org/enablers/bigdata-analysis-cosmos.
6 Cygnus Connector: https://github.com/telefonicaid/fiware-cygnus#section1.
7 Pentaho Community Edition: http://community.pentaho.com/projects/data-integration/.
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4 Prototype Platform Analysis

4.1 On-Site Trials

A group of students from our University tested the platform in a central area of the city
of Lecce (Southern Italy). The selected area presents high-traffic hotspots (two round‐
abouts and two 4-lane roads) and two base stations hosting multiple antennas from
different network providers (on the rooftop of two multi-storey buildings).

As for the mobile app usage test, we evaluated the opportunistic sensing mode by
collecting measurements in 1-hour time windows by walking across the area. Once
started, the app does not require any further intervention by the user, who can examine
measurements at any time, as indicated in Fig. 3A (app overall page for opportunistic
measurements). Both LEQ(T) and SPL values are reported and plotted on a XY graph.
Additionally, selected observation time window T, actual RSSI and serving network type
are indicated. The user can stop the sensing session with a dedicated button (page
bottom). The participatory sensing mode allows users to decide when performing a
measurement and whether enriching it with comments assessing noise sources w.r.t.
location (indoor/outdoor), nature (artificial/natural), estimated distance from the
observer, typology (amongst a set of predefined values). It is also possible to quantify
perceived nuisance levels (by activating a slider on a 10-value scale) and to add free-
text comments. This mode is available for noise measurement only, since the assessment
of EM emitting sources is much more difficult for unskilled users.

Fig. 2. Platform logical architecture.
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Fig. 3. Mobile UI for opportunistic measurements (on the left) and georeferenced map of noise
measurement locations along with sensed LEQ (30s) values (on the right).

Users can benefit from a Web application for georeferencing and visualizing meas‐
urements coming from a given area as points on a map with a colour ramp directly
proportional to measured values: both LEQ(T) and RSSI values can be plotted on this map.
Figure 3B reports the LEQ (30s) values sensed across the selected area. Measurements can
be interpolated as well, thus achieving an intensity map, which is a surface map where
adjacent measurements are interpolated according to a given algorithm in order to
compute values also for those points where no measurements were actually performed.
Intensity maps are extremely useful for understanding how measured levels are distrib‐
uted throughout the urban environment. Map renderings are achieved by forwarding
data, after the ETL process, towards a CartoDB8 instance, an open-source, Software as
a Service cloud platform for GIS map storage and Web visualization.

4.2 Measurement Accuracy and Privacy Concerns

One of the most relevant issues about MCS is the measurement accuracy, since mobile-
embedded sensors are typically less accurate than professional metering equipment. We
tackled this aspect in a two-fold way: on the one hand, noise measurements have been
validated instrumentally against a known sound sample thanks to a professional SLM;
on the other hand, both noise and signal strength measurements are examined during
the ETL pipeline in order to remove outliers. The instrumental validation involved a
30 s steady, mid-level, broadband noise source against which measurements gathered
from different smartphone models and from a professional, portable, Class-1 SLM (i.e.,
DeltaOhm HD9019) have been compared. After these trials, we achieved acceptable
accuracy, with average ±5 dB bias between MCS and SLM measurements, thus
confirming smartphone amenability to be used as preliminary monitoring tools. The

8 CartoDB: https://cartodb.com.
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outlier detection is perfomed thanks to a univariate algorithm removing measurements
with excessive amplitude in a given temporal window. We opted for a slightly modified
version of the Tukey’s method [27], which is simple and quite effective with datasets
following both a normal distribution and a not highly skewed lognormal distribution.

We also considered privacy issues, for reducing users’ concerns about their potential
tracking or identification. Any information or metadata capable of identifying the device
owner is discarded and users are notified about this when they start the app for the first
time. Mobile devices are only indexed thanks to their IMEI code, which do not allow
going back to respective owners (therefore, mobiles are traceable but their owners are
unknown to both platform managers and other application end users).

4.3 Data Estimation for a Smart City Scenario

The proposed platform exploits mobile devices and their embedded sensors, therefore
the number of prospected users is significant and it can be considered as a real Smart
City scenario, where several hundreds of data providers can be enrolled on a very large
geographical scale. This subsection is devoted to estimate the data occupancy growth
for our platform. Firstly, we estimated the average storage occupation of a single sensor
data measurement in nearly 4 kB. Then, by considering energy consumption issues and
typical users’ behaviors, we hypothesized that a plausible data collection pattern would
consist of 30 raw measurement per hour, over a time window of 6 h per day. We also
hypothesized 20 days of usage per month and 10 months of usage per year. Finally, if
we estimate to involve 5000 users during the first year of deployment and to double this
quantity each year, we have the estimations reported in Table 1, according to which the
DWH storage will grow of 30 GB per month and 314 GB per year in the third year after
the system deployment.

Table 1. Data growth estimations up to 3 years.

Parameter Year 1 Year 2 Year 3
per month per year per month per year per month per year

Involved users growth (%) – 0 – 100 – 100
Number of involved users – 5000 – 10000 – 20000
DWH occupation [GB] 4.58 45.29 15.71 157.69 31.14 314.15

5 Conclusions and Further Developments

In this paper, we examined how the Mobile Crowd Sensing (MCS) paradigm can be
exploited as an enabling factor for the fulfilment of the so-called Sensing as a Service
model (S2aaS) in a urban context, thus aiming at reaching a Urban Mobile Sensing as a
Service (UMS2aaS) model. Two monitoring scenarios have been identified, related to
typical life quality concerns of European citizens: noise and EM field exposure. There‐
fore, we designed, developed and preliminarily tested a mobile app allowing us to gather
(1) noise measurements by using smartphone-embedded microphones and (2) received
signal power levels (RSSI) by using smartphone internal antennas. The platform also
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consists of a DWH system for managing sensing data and of a web app providing users
with multiple views about collected measurements. The platform exploits some compo‐
nents of the FIWARE middleware for data brokering and storage functionalities.
Preliminary tests have been performed in a central area of the city of Lecce demon‐
strating its suitability in assessing both noise levels and RSSI. A series of improvements
are currently under evaluation, such as introducing other sensing tasks and providing
the system with publishing/subscribing functionalities, in order to schedule and request
sensing tasks to mobile devices scattered across a given geographical area. We will also
study proper policies to address energy consumption issues, in order to make the plat‐
form capable of sending the requested sensing tasks only to those devices having enough
energy to fulfill them for a sufficient lapse of time.
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accelerator “frontierCities” (Grant agreement n. 632853, sub-grant agreement n. 021).
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