
On Security SLA-Based Monitoring as a Service

Dana Petcu1,2(B), Silviu Panica1,2, Bogdan Irimie1,2, and Georgiana Macariu1

1 Institute e-Austria Timişoara, Timişoara, Romania
petcu@info.uvt.ro

2 West University of Timişoara, Timişoara, Romania

Abstract. Client-driven monitoring of security service level agreements
is not available nowadays in the market of Cloud services. Supposing that
security obligations associated with a service will be available soon in the
service level agreements, we designed such a monitoring service that can
be deployed on Cloud provider premises or as external service. It is a
stand-alone component of a larger system that allows the negotiation of
service level agreements and their enforcement. The concepts, design and
architecture of the proof-of-concept service are presented in this paper.

Keywords: Cloud · Security · SLA · Monitoring

1 Introduction

Resources deployed in a cloud environment grow day by day as companies and
governments move from on premises model to the Cloud. Moving to the Cloud
implies less responsibilities for the client as the Cloud provider manages different
aspects of the infrastructure [1]. However, monitoring responsibilities should not
be delegated completely to the Cloud provider, and monitoring from the user
perspective should be implemented. The monitoring tools should allow clients
to check that the quality of services they agreed with the Cloud provider is
maintained. They can provide insights on the security of the system through the
specification by the client of security parameters of interest. Such parameters
can be the status of the ports or the services running on a specific host.

Client-driven security monitoring in Cloud environments is laging behind
other client-driven operational monitoring, like performance monitoring. This
fact is sustained by the absence of security obligations associated with a service in
current service level agreements (SLAs), hindering the Cloud providers capacity
to offer trustworthy services [2]. Currently, the only service aspect included in
SLAs is service availability [3]. However, cloud services provider contracts are
expected to provide soon detailed and substantial security SLAs [4,5].

In this context, we are interested to provide an open-source SLA-based Cloud
security monitoring system that can act as Monitoring-as-a-service. It is deployed
together with a customer application on a Cloud provider premises providing
infrastructure-as-a-services (IaaSs), resides on the Cloud provider resources, or
is offered on third party premises. The role of such an SLA-based Cloud security
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.) IoT 360◦ 2015, Part I, LNICST 169, pp. 326–336, 2016.

DOI: 10.1007/978-3-319-47063-4 34



On Security SLA-Based Monitoring as a Service 327

Table 1. Challenges, barriers, models, metrics

Category Short description

Challenges Mapping between low-level metrics and application-based SLA
parameters

Ability to monitor SLA parameters to multiple Cloud layers (IaaS,
PaaS)

Uncertainty of Cloud environments in event observation (rate of
probes)

Cloud agnosticism (tightly coupling of monitoring tools to the services)

Big data security is time consuming, instant reaction difficult to
achieve

Barriers Security SLAs are not in place

Privacy laws that are restricting instant monitoring by Cloud providers

Security metrics are still vagues

Virtualization makes monitoring harder

The ability to monitor services is considered a security risk

Models Multi-layer model (facility, network, hardware, OS, middleware, appl,
user)

Cloud security control domains (application, interfaces, identity, access
etc.)

Metrics Cloud service measure &metric (scenarios, measure, metric,
measurement)

Service measurement index (category Security and Privacy)

Security indicators (e.g. rate of compliance with a catalogue of criteria)

Cloud security properties (core elements: identifier, definition,
attributes)

Security parameters for monitoring (incident, data, change, log,
isolation, etc.)

monitoring service in a larger framework, named SPECS, was exposed in [6]: a
security SLA (Sec-SLA) that is negotiated with a IaaS provider will be monitored
for compliance and alerts will be generated in case of security changes or in case
of Sec-SLA violations (leading to its enforcement).

We identified recently in [7] the challenges, barriers, models and metrics for
building a SLA-based Cloud security monitoring system. Table 1 summarizes our
conclusions. Other opinions related to the challenges of security monitoring in
Cloud environment are presented in [8].

In this paper we present the core and support services of the proposed service.
The next section is referring to related work and our motivation. The third
section is dedicated to core services, while the fourth to support services. The
last section is dedicated to conclusions.



328 D. Petcu et al.

2 Related Work

Analyzing the reports about the academic prototypes or commercial services
that are available for SLA monitoring or security monitoring in Clouds, we iden-
tified in [9] the fact that there is no report until date of an Sec-SLA based
Cloud monitoring service. We mention here only few of the monitoring tools
that were identified. There are several open-source SLA-oriented Cloud moni-
toring tools like CloudCompas (available on github.com), or Everest/SLA@SOI
(on sourceforge.net), as well as open-source Cloud security monitoring tools
like Snorby (on github.com). Commercial Cloud monitoring tools are many,
e.g. SLA-oriented ones from nimsoft.com or site24x7.com, or security-oriented
ones from ciphercloud.com, cloudflare.com, cloudpassage.com, splunk.com or
threatstack.com. Often Cloud monitoring tools are relying upon the services
of open-source general monitoring tools, like collectl, Ganglia, Nagios (all three
on sourceforge) or MonALISA (monalisa.caltech.edu). A comprehensive study
of the Cloud monitoring systems is available in [10].

Security parameters for monitoring systems were classified in [11,12], along
with methods and techniques for measuring parameters in practice. Thresholds
were established also to indicate when to trigger an event. However, security indi-
cators (observable characteristic that correlates with a desired security property)
were not provided. To overcome this problem, a step forward was made in [13] by
providing an attribute-based security property vocabulary (security properties
in abstract terms and as a properties with a set of defined attributes).

Cloud security monitoring is currently done on-premises, on the monitored
infrastructure, or via a SaaS. In the case of monitoring on-premises, a security
tool is able to make use of specific APIs as well as to collect logs from Cloud
services. In the second case, of monitored IaaS, a security tool is loaded directly
into an IaaS (no high bandwidth requirement, possible some high storage costs).
In the third case, monitoring data is obtained from the Cloud service (if avail-
able), and hand it to a managed security service provider. We are interested
to offer a deployable service that supports client-driven monitoring and can be
mapped to all three cases.

Fig. 1. Security monitoring data

http://www.github.com
http://www.sourceforge.net
http://www.github.com
http://www.nimsoft.com
http://www.site24x7.com
http://www.ciphercloud.com
http://www.cloudflare.com
http://www.cloudpassage.com
http://www.splunk.com
http://www.threatstack.com
http://www.monalisa.caltech.edu


On Security SLA-Based Monitoring as a Service 329

We proposed recently in [14] a taxonomy for the SLA-based monitoring of
cloud security. We reproduce here in Fig. 1 the class related to security mon-
itoring data. Note that monitoring specific utilities for collecting information
about security are referring to software vulnerabilities or bugs (OS/middleware
layer), IDS or firewalls (network), authentication systems or surveillance (facil-
ity), workload, voltage or temperature, memory or CPU (hardware).

3 SPECS Monitoring

Monitoring is highly important for SPECS framework. The features offered by
its platform(-as-a-service) rely on the information processed by the monitoring
module (whether we are talking about to overall platform functional process or
about the end-users SLAs that need to be fulfilled).

Monitoring as a Module in the SPECS Framework. The SPECS moni-
toring module addresses the problem of using monitoring for the fulfillment of
security-related user requirements. It enables the users to continuously keep an
eye on their applications with respect to certain security properties that might
be of interest to them. The module monitors the resources and services and
notifies events considered of relevance (according the SLAs) to an enforcement
module. The module integrates existing and custom monitoring tools/agents to
gather information on SLO metrics, in order to help the enforcement module to
detect possible alerts and violations.

Once signed a SLA enters the observed state in which dedicated monitoring
agents keep collecting information with regards to the execution of the negoti-
ated services, continuously checking in that way the fulfillment of the specified
service level objectives (SLOs). The module focuses on SLO metrics, i.e. the mea-
surable part of the SLAs. This assumption keeps the monitoring and enforce-
ment (diagnosis) functionalities separated, and improve the scalability of the
approach in presence of a large number of SLAs to follow. We assume the exis-
tence of a monitoring services repository that contains a static mapping between
possible SLO metrics and available monitoring components able to gather data
on those metrics. An enforcement planning component performs a lookup in
such repository to retrieve the monitoring services to activate. Such services
are then deployed, configured and activated by an enforcement implementation
component. The configuration of the monitoring systems includes setting proper
thresholds, intervals and values for the related SLO metrics according to what
has been specified in the SLA. The activation of the monitoring components is
carried out by a platform functionality (see next section).

Monitoring Workflow. The module deals with large amount of information
that needs to be collected, filtered or routed to other components. The monitor-
ing data volume depends on the number of metrics that need to be monitored
together and the number of users the platform need to deal with.



330 D. Petcu et al.

Fig. 2. Simplified monitoring workflow

The monitoring workflow include the following tasks (described in Fig. 2):

observe and collect: the targeted services are continuously monitored and spe-
cific data is collected directly from the services log files; this data is then sent
to the core monitoring infrastructure from where it is routed to dedicated
components that need to analyze the data;

aggregate: the monitoring information is used to compute some statistic data
regarding different targeted service behaviour; this aggregation is made based
on predefined or dynamically defined aggregation rules described in monitor-
ing policies that are continuously updated during the platform runtime;

filter: the monitoring data received from the targeted services is filtered and
routed to specialized services that needs the data to analyze;

archive: all the monitoring data is archived for later use, for example in case of
historical statistical computation of some defined metrics;

notify: send out external notifications in case of broken filtering rules set for the
monitored metrics.

The monitoring data is split into two types: the raw monitoring data, col-
lected by the monitoring adapters from the targeted services and monitoring
events, the data that is send through the monitoring infrastructure. The raw
monitoring data collected by the monitoring adapters is mapped into a stan-
dard message called the event format. The event format uses a simple but gen-
eral structure (Table 2) in order to allow any type of raw monitored data to
be mapped. In this way the monitoring core services are independent from the
platform and can be reused while not being tied up to a specific set of services
that can be monitored.

Core Services. The components of the SPECS monitoring core services are:

Event Archiver: aims to retain all the monitoring data for a defined period of
time for later data preprocessing;

Event Aggregator: is responsible with point-in-time observations, transforma-
tions of events by showing the global status of the monitored system;



On Security SLA-Based Monitoring as a Service 331

Table 2. Monitoring event format

Field Description

component Identifier of the component instance generating the event (i.e., a
VM)

object Hierarchical string pointing event source that generated the event

labels Hierarchical string that provides a way to give a context to the
event

type Hierarchical string representing the type of event

data Concrete information specific for each type of event

timestamp Time of the event, in seconds

token (optional) Used by some monitoring component for a specific
purpose

Event Hub: acts as a router between the monitoring adapters and the other
monitoring components; it uses filters to route the monitoring data among
the components;

Monitoring Adapter: collects the raw data from the targeted services and sends
out the data to the monitoring core in form of monitoring events;

Monitoring Policy Filter: filters the aggregated events and searches for possible
violation or alerts of the monitored metrics;

SLO Metrics Exporter: notifies the others platform components in case of vio-
lations or alerts set for the monitored metrics.

The Event Hub receives the events collected by the various Monitoring
Adapters and routes them towards the Event Aggregator, Event Archiver and the
Monitoring Policy Filter (Fig. 3). There are several important sub-components.
A HTTP Mux implements an HTTP interface through which the Monitoring
Adapters publish events to the Event Hub and clients like the MoniPoli Filter can
receive desired events. A Router Multi-Decoder, which accepts as input events

Fig. 3. SPECS monitoring core services architecture



332 D. Petcu et al.

and transforms them into a format which can be handled by the Mozilla Heka1

stream processing and routing system, used internally by the Event Hub. A
Router Multi-Encoder encodes the Hub’s internal messages back as events, rep-
resented in the platform’s internal format (Table 2). A Router Output, together
with the HTTP Mux sub-component, streams events to all interested parties.
An Archive Output call the Event Archiver in order to store routed events. A
Heka Router forwards internal messages to any filter of the Event Hub and to
the Router Output and Archive Output sub-components. A Router Input uses
the Router Multi-Decoder for decoding received events and delivers the decoded
internal messages to the Heka router. Sieve Filters group events based on infor-
mation contained in them. For example, one may define a filter for grouping all
events related to CloudWatch2 and use this in order to stream all these events
to the MoniPoli Filter.

The Event Aggregator consumes events and pushes out the data back into
the Event Hub for further consumption. Based on various aggregation rules,
it aggregates the events. To fulfill the usual statistical measurements (like min,
max, average, standard deviation, etc.) a basic aggregator implementation is cur-
rently implemented. More sophisticated, implementations could be implemented
to support more complex measurements like identifying trends through various
methods like statistical or neural networks. At runtime there can be multiple
instances of the same event aggregator implementation, with different aggrega-
tion rules, especially for scalability purposes.

The Monitoring Policy Filter has three main components. The Event Filter
registers itself to the Event Hub to receive all the stream of events labeled with
the security metric labels reported in the corresponding label attribute of the
policy. The MoniPoli Rule Filter applies the rule at runtime and export them,
through the MoniPoli Output interface. The MoniPoli Rule generator accepts as
input a new SLAs and generates new rules, according to the algorithms proposed
in the MoniPoli section, communicating them to the MoniPoli Rule Filter.

The Event Archiver retains the monitoring data and events for a defined
period of time (when an SLA finished its execution or it is terminated then
all the associated archived monitoring data and events are disposed). The com-
munication interface is based on a REST API that supports PUT, GET and
DELETE actions (store data and events; retrieves the data from the archiver
database at query like event attribute and a time interval; erases the data from
the database on query); operation handlers are the actual functions that perform
a specific operation. A request pool handles multiple requests that need to be
routed to specific internal handlers. A distributed object-store database is used
for storing the monitoring data and events.

The SLOM Exported receives only the monitoring events that should be
notified. MoniPoli Filter makes the selection of the events and forwards them
to the SLOM Exporter. The Exporter generates an XML representation of the
monitoring event, made in agreement with the SLA XML framework. It uses the

1 https://github.com/mozilla-services/heka.
2 https://aws.amazon.com/cloudwatch/.

https://github.com/mozilla-services/heka
https://aws.amazon.com/cloudwatch/


On Security SLA-Based Monitoring as a Service 333

SPECS’s SLA Platform API in order to notify the event, in the right format to
the enforcement module.

The Monitoring Adapter sends out the events to the Event Hub and receives
data from Monitoring Agents. The format of this data depend on the type of
agent, and the data is transformed by the Monitoring Adapter into the platform
internal format to represent events that are finally sent to the Event Hub.

Monitoring Agents. Two agents were tested in SPECS context: OpenVAS, a
vulnerability scanner and Nmap, a network security scanner. Three others are on
the list for the next integration steps, to prove the concepts feasibility: OSSEC,
a host intrusion detection and prevention system, Snort, a network intrusion
detection system, and Monit, a general purpose monitoring tool3. Security met-
rics that can be monitored by Nmap, for example, are status of ports, service
version, guess OS, time since last restart, ciphers used by TLS Ciphers used by
servers that offer TLS.

We proposed in [16] a monitoring system (agent in SPECS context, despite
the agent-less internal architecture) based on Nmap that allows to execute mul-
tiple Nmap instances at the same time to provide efficiency and fault tolerance.
As number and type of resources that should be monitored can quickly become
very large, a monitoring system should be scalable, provide small overhead and
fault tolerance. The tests performed on Google Compute Engine premises showed
the scalability of the proposed system. The event message mentioned in Table 2
includes in this case, as component, the UUID of the component that creates
the message, as object, nmap, as labels, client id and job id, as type, metric, as
data, Nmap results after they have been processed, and as timestamp, the time
when the event message was created.

4 SPECS Enabling Platform

The Enabling Platform creates the execution environment for the SPECS’ plat-
form that hosts the SLA services. This component is a bootstrap service that
transforms a standard resource (e.g. a Cloud virtual machine, a VM, with an
Linux OS) into an execution environment ready to host other resources. The
other resources have some special requirements in terms of local libraries or soft-
ware packages and services or to remote resources to interact with. The Enabling
Platform solves this issue and it is also able to acquire the compute resources,
from various Cloud providers, where the SPECS Platform is hosted.

The Enabling Platform consists of several core components (Fig. 4):

– resource allocator, a standalone service able to acquire resources from the
cloud providers based on a resource descriptor document where the end-user
specifies the requirements and constraints for platform deployment;

3 OpenVas: openvas.org; NMAP: nmap.org; OSSEC: ossec.net; Snort: snort.org;
Monit: mmonit.com/monit/.

http://www.openvas.org
http://www.nmap.org
http://www.ossec.net
http://www.snort.org
http://www.mmonit.com/monit/


334 D. Petcu et al.

Fig. 4. Enabling platform architecture

– cluster formation service, an orchestrator service able to manage the resources
scheduling based on the definition given by the end-user (resource descriptor);

– mOS node bootstrapper, a simple and autonomous resource clustering solution
that transform a standard operating system into a specialized environment
that is able to host the platform resources (mOS stands for multi-purpose
OS); it uses Chef service-client architecture for package deployment;

– mOS naming service, a distributed resource management service able to offer
resource management features like resource registration and retrieval in a het-
erogeneous distributed system.

We focus here on cluster formation service, mOS bootstrapper and naming
service (NS), as having the particular ability (not yet encountered in literature)
to transform a set of simple Cloud resources (acquired by the resource allocator)
into an execution environment ready to host complex applications and services.

The cluster formation service takes a resource descriptor from the user or
a third party service and tries to interpret it. The result is a bootstrap config-
uration that contains, among others, the number of resources that need to be
acquired and for each resource a bootstrap plan that mOS node bootstrapper
needs to apply on the acquired Cloud resources. The latest is a package that
is deployed on the target VM, as a system service that will transform the VM,
based on the bootstrap plan, into an execution environment that will host the
target platform. It relies on Chef4 technology for package deployment and on
mOS NS for distributed resource identification. Chef server-client architecture
is complex to configure in an unattended manner as it implies a lot of security

4 www.chef.io.

www.chef.io


On Security SLA-Based Monitoring as a Service 335

and resource information to be exchanged between the clients and the server.
Using the mOS NS service the clients can automatically find the Chef server
contact information (like IP address, chef services ports and registration URLs
used by the clients to get registered in the Chef server database). When the Chef
cluster is setup the mOS node bootstrapper will tell to the Chef server to apply
deployment plan on each client based on the initial implementation plan.

mOS naming service is a distributed resource management service that uses
a distributed system as an engine based on Paxos algorithm described in [15].
The package is started on each targeted node and the distributed system will be
automatically be created based on standard network discovery protocols (mul-
ticast or broadcast). When the nodes are synchronised they can start exchange
and store information. Each time a Chef client will install a service a trigger is
activated and mOS NS client will register the service together with some addi-
tional information (IP address, port number or other distinctive information)
required for resource discovery. On the other hand when a node needs a spe-
cific resource to consume it will query the service to find out if such a service
is already registered and what are the details of it. In this way the Chef server-
client architecture can be deployed unattended and further the entire platform
as well in the same manner. The naming service can be also used by any other
resource that needs to store or retrieve other resource information because it
offers a standard communication interface (REST).

5 Conclusions

The motivation, the concepts and implementation of a SLA-based Cloud security
monitoring system were exposed in this paper. Special particularities are its
modularity and ability to integrate external security scanners. The proposed
software prototype is a proof of the fact that a interoperability layer can be
used in Cloud security monitoring to interconnect various existing tools. The
presentation focused on the component design and we neglected the description
of the entire SPECS framework which can be found in previous reports.

Acknowledgments. This work is partially supported by the European Commission
under grant agreement FP7-610795 (SPECS). We thank also Ciprian Crăciun for his
consistent contributions to the design of the core services.

References

1. Spring, J.: Monitoring cloud computing by layer, Part 1. IEEE Secur. Priv. 9(2),
66–68 (2011)

2. Bernsmed, K., Jaatun, M.G., Meland, P.H., Undheim, A.: Security SLAs for fed-
erated cloud services. In: 6th ARES, pp. 202–209 (2011)

3. Ouedraogo, M., Mignon, S., Cholez, H., Furnel, S., Dubois, E.: Security trans-
parency: the next frontier for security research in the cloud. J. Cloud Comput.
Adv. Syst. Appl. 4(12), 1–14 (2015). doi:10.1186/s13677-015-0037-5

http://dx.doi.org/10.1186/s13677-015-0037-5


336 D. Petcu et al.

4. Wagner, R., Heiser, J., Perkins, E., Nicolett, M., Kavanagh, K.M., Chuvakin, A.,
Young, G.: Predicts 2013: cloud and services security. Technical report, Gartner
ID:G00245775 (2012)

5. Casola, V., De Benedictis, A., Rak, M.: On the adoption of security SLAs in the
cloud. In: Felici, M., Fernández-Gago, C. (eds.) A4Cloud 2014. LNCS, vol. 8937,
pp. 45–62. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17199-9 2

6. Rak, M., Luna, J., Petcu, D., Casola, V., Suri, N., Villano, U.: Security as a service
using an SLA-based approach via SPECS. In: CloudCom 2013, pp. 1–6 (2013)

7. Petcu, D.: SLA-based cloud security monitoring: challenges, barriers, models and
methods. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp.
359–370. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14325-5 31

8. Mazhar, A., Khan, S.U., Vasilakos, A.V.: Security in cloud computing: opportuni-
ties and challenges. Inf. Sci. 305, 357–383 (2015)

9. Petcu, D., Craciun, C.: Towards a security SLA-based cloud monitoring service.
In: 4th CLOSER, pp. 598–603 (2014)

10. Aceto, G., Botta, A., De Donato, W., Pescape, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

11. Hogben, G., Dekker, M.: Procure secure: a guide to monitoring of security service
levels in cloud contracts. Technical report, ENISA (2012)

12. Rahulamathavan, Y., Pawar, P. S., Burnap, P., Rajarajan, M., Rana, O.F.,
Spanoudakis, G. Analysing security requirements in cloud-based service level agree-
ments. In: 7th SIN, pp. 73–76 (2014)

13. Pannetrat, A., Hogben, G., Katopodis, S., Spanoudakis, G., Cazorla, C.S.:
Security-aware SLA specification language and cloud security dependency model.
Technical report, CUMULUS (2013)

14. Petcu, D.: A taxonomy for SLA-based monitoring of cloud security. In: 38th
COMPSAC, pp. 640–641 (2014)

15. Lamport, L.: Paxos made simple, fast, and byzantine. In: OPODIS, pp. 7–9 (2002)
16. Irimie, B.C., Petcu, D.: Scalable and fault tolerant monitoring of security parame-

ters in the cloud. In: 17th SYNASC (2015, in print)

http://dx.doi.org/10.1007/978-3-319-17199-9_2
http://dx.doi.org/10.1007/978-3-319-14325-5_31

	On Security SLA-Based Monitoring as a Service
	1 Introduction
	2 Related Work
	3 SPECS Monitoring
	4 SPECS Enabling Platform
	5 Conclusions
	References


