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Abstract. Big Data is revolutionizing nearly every aspect of our lives
ranging from enterprises to consumers, from science to government. On
the other hand, cloud computing recently has emerged as the platform
that can provide an effective and economical infrastructure for collec-
tion and analysis of big data produced by applications such as topic
detection and tracking (TDT). The fundamental challenge is how to
cost-effectively orchestrate these big data applications such as TDT over
existing cloud computing platforms for accomplishing big data analytic
tasks while meeting performance Service Level Agreements (SLAs). In
this paper a layered performance model for TDT big data analytic appli-
cations that take into account big data characteristics, the data and event
flow across myriad cloud software and hardware resources. We present
some preliminary results of the proposed systems that show its effective-
ness as regards to understanding the complex performance dependencies
across multiple layers of TDT applications.
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1 Introduction

Big Data is revolutionizing nearly every aspect of our lives ranging from enter-
prises to consumers, from science to government. Managing large, heterogeneous
and, rapidly increasing volumes of data has long been a challenge. On the other
hand, cloud computing [2,13] in recent times has emerged as the platform that
can provide an effective and economical infrastructure for collection and analy-
sis of big data produced by data analytics applications such as topic detection
and tracking (TDT). TDT applications detect events (such as disease outbreak,
sentiments of customers for certain products or movies etc.) by analysing data
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from social media and other online sources. Though big data processing and
analytics technologies such as hadoop and mahout have evolved, we still lack
orchestration techniques for developing scalable TDT applications in domains
such as disease outbreak and sentiment analysis that can elastically scale in
response to changing data volume, data velocity, and data variety. Hence, the
fundamental challenge is how to cost-effectively orchestrate these TDT appli-
cations over cloud-based hardware and software resources for accomplishing big
data analytic tasks (e.g. event detection delay) while meeting the new breed of
performance Service Level Agreements (SLAs). By the new breed of SLA’s we
point to the need of future TDT applications that can not be architected to meet
the traditional cloud SLA’s such as availability and reliability. To the contrary,
these new breed of TDT applications need strict SLAs’ guarantee on the metrics
such as accuracy, precision, and speed of event detection.

To address the above challenges, firstly, it is necessary to establish a tax-
onomy of performance metrics that can capture the relationship between the
applications SLA (e.g., event detection delay, alert generation delay, and alerts
sent per second), big data characteristics (e.g. data volume, query rate, and
query mix) and resource configuration of the underlying software (e.g., Hadoop,
NoSQL, distributed file system, and machine learning library) and hardware
(CPU, Storage, and Network). In the literature some performance metric taxon-
omy and models are available, but they have the following limitations: (i) they
target trivial applications (such as “word count”) which do not have end-to-end
performance management concerns as evident in the complex TDT applications
and (ii) most of them are concerned only with the performance modelling the
hardware resources while ignoring end-to-end dependencies between the appli-
cation, software and hardware resource layers. As a consequence, the existing
approaches are not appropriate to study the end-to-end performance SLA con-
cerns of the TDT applications. In this vision paper, we propose that a novel,
end-to-end taxonomy of performance metrics could be used to develop perfor-
mance models for studying and analysing the performance SLAs of complex big
data applications such as TDT. The novel contributions of this paper include:

– We present a concrete vision statement backed by rigorous analysis of the
related work for developing layered and end-to-end performance metric taxon-
omy for future TDT applications. These performance metrics take into account
the data and event flows across multiple software and hardware resource types
while considering complex performance dependencies across the layers.

– We present a conceptual architecture for future TDT application which forms
the basis for developing the above mentioned performance metrics taxonomy.
We also conduct preliminary experimentations for showing the practicality of
the proposed approach.

2 Big Data Analytics Application Scenarios

The importance of big data analytics applications such as topic detection [14–17]
and tracking has practical values in a variety of fields. Following are some typical
application use cases that under take non-real time analysis activities.
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1. Natural Disaster Risk Assessment management application: By
analysing historical data from social media and other sources such as remote
sensing satellites and deployed seismic sensors, it is possible to conduct fol-
lowing pre-disaster and post-disaster impact assessment in context of nat-
ural disasters such as earthquakes. Historical feeds from social media can be
analysed to understand the regions which are most prone to future earth-
quakes. Such historical feeds can be augmented with crowd sensed data such
as high resolution images of public and private infrastructures including build-
ings, bridges, and roads. These crowd sensed data can be further analysed for
pre-assessment of risks and ability of these public and private infrastructures
to cope with future earthquakes. The results of such a pre-disaster assess-
ment could be used to evacuate people out of dangerous infrastructures in
advance. On the other hand in the post-disaster situations, timely analysis
of data from these social media, crowd senses, and other online sources can
help rescue teams, medics, and relief workers in planning for future rescue
and medical operations.

2. Traffic pattern analysis application: By collecting and processing the his-
torical traffic information along with social media feeds, this application can
help in meeting the following two goals: Offering the driver the information of
the possible traffic congestion; providing advice to the drivers on alternative
routes.

3. Epidemic propagation analysis application: It is well-known that by
carefully analysing the social media feeds related to people’s health and well-
being could help in learning about past epidemic outbreak. Such data analytic
applications can help in improved coordination and deployment of health
services.

3 Related Work

The area of performance management of cloud-based big-data processing frame-
works have been widely studied. However, understanding and developing an end-
to-end performance model of cloud-based big data analytics applications is still
in its infancy. In the past several years, Hadoop has been deployed for undertak-
ing batch processing task over large volumes of data (not in real-time). However,
most research focus on developing performance model of MapReduce framework
only while ignoring the other software and hardware components/resources. In
[4] the author describes the complexity of MapReduce (MR) tasks and presents
how to model this complexity. Furthermore, the author provides a deep analysis
of the working of MapReduce, the interaction and correlation among various
steps of MapReduce and the associated costs. The author presents a model to
predict the execution time of tasks according to certain cost vectors. The focus
of the paper is only on Hadoop more specifically on the MR, HDFS at the IaaS
layer. The authors use WordCount, Hive Query Job, and Distributed Pentmino
as the usecases for modelling the MapReduce jobs all of whose execution is con-
siderably different from that of analytical machine learning algorithms. It is well
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understood that machine learning algorithms generate interactive computations
and intermediate data that requires a more concrete formulation of the MR exe-
cution strategy. In [19], the authors focus on the study of tasks assignment issue
in Hadoop. The authors prove that the hadoop task assignment process seeking
to minimise the total execution time is NP-Complete. However, this paper is
completely based on the mathematical formulation of MR and lacks experimen-
tal validations in real world cloud environments.

In [5], the authors propose ARIA (Automated Resource Inference and Allo-
cation) framework composed of SLO (Service Level Object) scheduler, slot esti-
mator, job profiler, profile database and slot allocator to address the challenge of
resource allocation for MR jobs to meet the required SLOs requirement bound
by a job completion deadline. The applications considered include Word count,
Sort, Bayesian classification. TF-IDF, WikiTrends and Twitter. Though ARIA
address the challenge of estimating performance of application that use machine
learning for analysis, it fails to address the following (1) Provide performance
insights across each individual cloud layer i.e. IaaS (CPU, Memory, Network)
and PaaS (HDFS storage considerations); (2) Employs a simple online greedy
algorithm to calculate the max, min and mean of execution time of Map or
Reduce tasks to estimate the MR job execution time and (3) Although they
employ bayesian classification, the use of it is limited which renders it insuffi-
cient to prove that this performance model will be suitable for cloud-based big
data analytics systems. In [18] a task scheduling mechanism for runtime perfor-
mance management of MR framework is proposed. This management scheduler
can use two strategies to allocate resources: the min-scheduler and the max-
scheduler. The min-scheduler will give a job minimum resources to meet certain
execution time constraint while the max-scheduler will give high priority jobs
maximum resources. The proposed model has been evaluated over applications
such as word count and table joins using hive. Similarly, in [6], the authors pro-
posed a framework called MRShare which can be plugged into any MapReduce
system. The MRShare is the first framework to analyse the work sharing prob-
lem in MapReduce i.e. different jobs might share resources together. A series
of experiments were conducted to validate the proposed work sharing approach
on Hadoop frameworks (Hadoop HDFS, MapReduce, Hive and Pig) running on
Amazon clusters. In [7], the authors proposed a prediction model for MapRe-
duces performance taking into account the I/O congestion and task failure. The
authors design a mathematical model to predict the performance of MapReduce,
meanwhile they use the Hadoop as the experimental testbed to validate their
model. In [8] the author proposes a prediction model based on greedy policy of
MapReduce in terms of different configurations (e.g. different MR parameters,
different data sizes, different I/O, etc.).

In [9] the authors propose a performance model of Hadoop which describes
data flows and cost information. This performance model can be classified into
three parts: Map. Reduce and Shuffle. This performance model involves the CPU
cost and the I/O cost. In [10], the authors design a model based on historical job
execution records adopting locally weighted linear regression (LWLR) technique
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to predict the execution time of a MapReduce job. Similarly, in [12], the authors
propose a performance model of Hadoop. This model takes the network into
consideration and proves that network bandwidth plays a vital role in the perfor-
mance of hadoop system. However, these approach does not provide the metrics
required to model the end-to-end performance of big data analytics application.
For instance, a ML algorithm like the Naive Bayes classification algorithm will
have more than one MapReduce task. Furthermore, some steps (such as serial-
ization, etc.) and relations among different steps (such as parallel or overlap)
are not considered in the current performance model presented in the literature.
Some of related works also study the performance of MapReduce-based machine
learning algorithms complexity. However these focus on the theoretical aspects
of the algorithm without any evaluation in real cloud environments to validate
the theoretical outcomes [11].

3.1 Summary of Limitations

1. The negligence at the Infrastructure-as-a-Service layer: The influence from the
memory has been severely neglected. Most performance models of MapReduce
or Hadoop (HDFS and MapReduce) are only related to the CPU and job
workload, assuming that memory is a trivial aspect. As a matter of fact, it
is the other way around. In actuality, the impact of memory on the speed of
processing data in particular in big data TDT application needs to be studied
in order to develop an effective performance model (e.g. due to the principal
of “Spill” operation in the MapReduce process. The Spill means that the
output data would be sent to the memory, and only when the memory is near
to be filled (no more memory space for storing the new data), the memory
starts transmitting data into storage).

2. The negligence from Platform-as-a-Service layer: Consider the example
of Hadoop for processing cloud-based TDT applications. The inaccurate
assumption of when the shuffle starts could have a significant impact on
the system’s performance. Many MapReduce model assume that the shuffle
part starts when all the Map tasks have been done. However, it is not always
the case. In fact, the shuffle process can start before the end of map process
by tuning certain performance parameter or metric. Moreover, many models
make a simple assumption to determine the number of mapper based only
on the size of input data. However, the number of map tasks is mainly con-
trolled by three parameters which are dfs.block.size, mapred.map.tasks and
mapred.min.split.size. Hence, determining the number of mapper is a com-
plex task. Finally, at the application layer such as Mahout machine learning
component, there is a clear gap in the existent research with respect to per-
formance modelling. We believe, modelling the end-to-end performance of
a TDT application involving machine learning components such as Mahout
using only MapReduce performance metrics is not accurate. Our preliminary
results validate our proposition.

3. Lack of understanding about the dependencies of each software and hardware
resources across TDT stack: Considering the Hadoop MapReduce framework,
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the relation between components across layer such as memory, the order of
processing the data i.e. sequential or MapReduce and the parameters govern-
ing the machine learning component (such as Mahout) needs to be analysed
and studied to determine the impact they have on each other’s performance.
This will help in developing a more concrete and accurate end-to-end perfor-
mance model.

4 End-to-End Performance Modeling of Cloud-Based Big
Data Analytics Applications: Our Vision

4.1 Conceptual Architecture

As new TDT applications start to emerge, there is a need for processing high
volume, velocity and heterogeneous variety of data (big data characteristics).
We need to develop novel application architecture that builds upon the recent
progress made in the domain of cloud datacentres offering hardware resources
(CPU, Storage, and Network) and big data processing technologies (e.g. Hadoop,
Mahout, S4, Spark, NoSQL, etc.) offering software-based application program-
ming abstractions and operations. To this end, we present the conceptual archi-
tecture of such a TDT application in Fig. 1. The conceptual architecture consist
of three layers including Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). SaaS represents the TDT appli-
cation, PaaS includes the big data processing technologies or software resources,
and IaaS has the cloud datacentre hosted hardware resources.

Fig. 1. The conceptual architecture of big data analytics application

4.2 Performance Metric Selection: Preliminary Exploration

Table 1 lists the various high-level parameters that we consider at each layer
to build the proposed end-to-end TDT-based big data application performance
model. These parameters have been developed taking into consideration the
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Table 1. Big data analytics application (TDT) performance metrics for each layer

Layer Metric

SaaS Precision and Recall

PaaS MapReduce Number of Map tasks, Number of Reduce tasks, the total size of input

data, the size of splitting data, the scheduling mechanism, the format

of file

HDFS The architecture of HDFS like the number of Datanodes, the resources

possessed by each node (Namenode and Datanode), the replication

number

IaaS CPU utilization, Memory utilization, Network Bandwidth

conceptual architecture presented in Fig. 1 typical cloud-based batch processing
system such as Hadoop.

In the SaaS layer, recall and precision will be impacted considerably due to
the different types of data mining algorithms adopted and the variation in data.
E.g. considering the naive bayes algorithm, the training part is implemented
using four MapReduce steps. However, the testing process consist of only one
MapReduce job called BayesClassifierDriver. The PaaS layer for the frameworks
such as Hadoop has two software components, namely, MapReduce and HDFS.
For the MapReduce operation, we will use the number of maps and reducers,
the total size of input data, the size of splitting data, the scheduling mechanism
(there are three popular kinds of scheduling algorithms which are FIFO - First in
First Out, capacity and fair), and file format. For HDFS, we are mainly concerned
with the architecture of HDFS. The different architectures of HDFS lead to
changes in data storage efficiency that influence the number of replications and
storage locations. Another important factor at the HDFS layer is the block size.
The block size will directly affect the number of mappers. At the IaaS layer, we
consider configurations [20] of CPU, memory and network. The number of CPUs
on the shared cluster and the speed of each CPU core has significant impact on
the modelling the execution time. Further, memory also plays a pivotal role in
determining the execution speed.

5 Preliminary Experimental Outcomes

In this section, we present preliminary experimental trials conducted to validate
and verify the correctness of the identified metrics at each layer. The evaluation
was conducted using Hadoop 2.4.1 and Mahout 1.0 systems. The performance
metric configurations of these system are presented in the Table 2.

In order to validate and verify the identified parameter’s influence on var-
ious hardware and software components across the layers of a TDT applica-
tion, we conducted 4 preliminary experiments. Our input dataset is a collec-
tion of Tweets related to Flu collected by COSMOS project (www.cs.cf.ac.uk/
cosmos/) at Cardiff University. We employ the Naive bayes classification tech-
nique to match tweets to topics i.e. “related to FLU” and “not related to flu”.

www.cs.cf.ac.uk/cosmos/
www.cs.cf.ac.uk/cosmos/
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Table 2. Experiment test bed configuration

Node Configuration

Master Node 4 Intel(R) Core(TM) CPU T7700 2.40 GHz 8 GB 10 GB Ubuntu 14

Name Node 1 4 2 Intel(R) Core(TM) CPU T7700 2.40 GHz 4 GB 10 GB Ubuntu 14

Name Node 2 2 Intel(R) Core(TM) CPU T7700 2.40 GHz 4 GB 10 GB Ubuntu 14

In our experiments, we extended the naive bayes implementation provided by
the Apache Mahout (mahout.apache.org). Apache Mahout is a scalable machine
learning library built on Hadoop Map Reduce framework.

5.1 Experiment 1: Influence of Data Size

In this experiment, we fix the hadoop cluster configuration, while changing the
volumes of input Tweet data. We compute and measure the execution time for
the following operations (1) converting tweet data into vectors (a requirement for
Mahout to process the data) to be consumed by the naive bayes algorithm and
(2) training the data for naive bayes classification. The result of this experiment
is shown in Table 3.

Table 3. Experiment 1: influence of data size

Data size Operation Execution time

0.316 GB Text vectorisation 4.025 min

Naive Bayes training 1.444 min

78.34 MB Text vectorisation 3.98 min

Naive Bayes training 1.4077 min

5.2 Experiment 2: Changing Hadoop Map Reduce Configuration

Secondly, we conduct experiments with 0.316 GB data keeping the CPU con-
figuration fixed (shown in Table 2) while changing the numbers of mappers and
reducers. The result is shown in Table 4 dealing with the execution time of train-
ing model.

5.3 Experiment 3: Changing Hadoop Map Reduce Configuration

In this experiment, we use 2 different machine learning algorithms namely the
Naive Bayes and C Naive Bayes. The data size used for the experiment is
0.316 GB. The hadoop map reduce layer is configured with 1 mapper and 1
reducer. Table 5 shows the values for Precision and Recall.
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Table 4. Experiment 2: changing MR configuration

Mappers Reducers Execution time

1 1 1.441 min

2 1 1.219 min

3 3 1.433 min

Table 5. Experiment 3: different machine learning algorithms

Algorithm Precision Recall

C-Bayes 59.22 % 61.08 %

Naive-Bayes 57.20 % 60.40 %

Table 6. Experiment 4: changing VM configuration

VM Configuration Execution
time

MapMemory: 1600 Mb; ReduceMemory: 3072 Mb; SortMemory: 512 Mb 1.3328 min

MapMemory: 512 Mb; ReduceMemory: 1024 Mb; SortMemory: 286 Mb 1.4441 min

5.4 Experiment 4: Changing CPU (VM) Configuration

In this experiment, we use 2 different VM configurations for hadoop name and
data nodes. The data size used for the experiment is 0.316GB. The hadoop map
reduce layer is configured with 1 mapper and 1 reducer and the Mahout layer
runs the C-Bayes algorithm. Table 6 shows the outcome of this experiment.

5.5 Experimentation Summary

The experimental outcomes verify the interdependencies between the various
components of a big data analytics system across each layer of the cloud and their
impact on system’s performance. In particular, results of experiment 2 further
validates our vision in developing an end-to-end performance model as with more
mapper and reduces, the system’s performance degraded for an identical dataset
and machine learning algorithm.

6 Conclusion

In this paper, we presented our vision and challenges of designing of a generic
TDT application (that has non real-time data analytics requirement) based on
integrating hardware (CPU, Storage, and Network) and software (batch process-
ing system, NoSQL system, Machine Learning system) resources. We further
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considered and analysed the new performance challenges arising in such TDT
applications due to integration of multiple resource types and processing of
heterogeneous data flows. Next, we developed taxonomy of performance met-
rics relevant to hardware and resource types. Finally, we conducted small
scale experiment based on real-world implementation to study the performance
of flu detection TDT application based on varying workload and resource
configurations.

In the future work, we will extend our conceptual architecture and perfor-
mance metric taxonomy to include real-time processing requirements. At the
same time we will work on generalizing our taxonomy to include the features of
other classes of big data systems such as Apache Spark, and Apache SAMOA
(online machine learning library).
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