
Towards Autonomic Middleware-Level Management
of QoS for IoT Applications

Yassine Banouar1,3(✉), Saad Reddad3, Codé Diop2,3, and Christophe Chassot2,3

1 Université de Toulouse, UPS, Toulouse, France
2 INSA, Villeurbanne, France

3 CNRS-LAAS, Toulouse, France
{banouar,reddad,diop,chassot}@laas.fr

Abstract. The Internet of Things is expected to bring large and promising spec‐
trum of social goods in various domains. Several new challenges arise or are to
be reconsidered within the IoT systems supporting these goods, among them the
Quality of Service (QoS) issue. The goal of this paper is first to introduce our
approach for an autonomic Middleware-level QoS management of IoT systems.
As a contribution at the second maturity level of the autonomic computing para‐
digm such as defined by IBM, it is then to propose and validate, within an emula‐
tion testbed platform, a proof of concept-oriented architecture of a monitoring
component allowing detecting QoS degradation symptoms. We also demonstrate
the benefits that could be gained from simple network-inspired QoS-oriented
adaptation actions.

Keywords: Internet of Things · Qos · Middleware · Autonomic computing ·
Monitoring

1 Introduction

Now, the Internet includes not only computers but also all kinds of communicating and
more or less smart objects. This new extension is called Internet of Things (IoT), it will
allow bringing a large and promising spectrum of social goods in various domains such
as health, safety, etc. Within IoT systems, several challenges are to be considered, among
them the QoS issue (i.e. the ability of the service to ensure non-functional properties
such as bounded response time).

The QoS issue has been addressed many times in the field of the “classical” Internet
[1, 2]. This issue becomes again relevant within IoT systems. While conventional serv‐
ices usually involve two end-hosts and intermediate routers, IoT services refer to “activ‐
ities” involving much many hardware/software entities; their interconnection imposes
the use of communication middleware, such as the open source OM2M platform [5],
enabling discovery of connected devices, abstraction of network heterogeneity, etc.
Providing such middlewares with QoS-oriented capabilities then becomes a necessity
that is still under research study. In this context, the first contribution of this paper is to
introduce our vision of an autonomic QoS management at the Middleware level,
following the IBM autonomic computing (AC) paradigm [11]. Towards this objective,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
B. Mandler et al. (Eds.) IoT 360° 2015, Part I, LNICST 169, pp. 290–296, 2016.
DOI: 10.1007/978-3-319-47063-4_30



the second contribution takes place at the second level of maturity of the AC such as
defined by IBM; it consists of developing monitoring solution aimed at detecting QoS
degradations, helping the administrator in his/her decision to execute adaptation actions.

The rest of this paper is organized as follows: Sect. 2 presents the architecture prin‐
ciples towards a QoS-oriented autonomic management of the OM2M middleware.
Section 3 details the functionalities and architectural principles of the proposed moni‐
toring solution. Section 4 presents how a “proof of concept” implementation of our
monitoring solution has been tested on an emulation platform, together with the benefits
that could be gained from a simple network-inspired QoS-oriented action performed by
the administrator when a degradation symptom is detected.

2 Architecture Principles Towards QoS-Oriented Autonomic
Management of Middleware Layer for IoT Systems

A structured architectural model of an IoT system is proposed in [3, 4], which
includes three levels: Application Level, Network Level and Perception Level. As
subpart of the Application level, the Middleware level is aimed at hiding the details
of various underlying technologies. In an IoT perspective, it abstracts heterogeneity
of physical objects by providing homogeneous representation facilitating their
handling by IoT applications. It is also aimed at offering several services such as
information/services/user access rights/devices management. The contributions
exposed in this paper have been done using the ETSI compliant OM2M open source
middleware platform [5]. OM2M is a RESTful platform running on the top of the
OSGi layer, making it modular and highly extensible via plugins, offering specific
ETSI-M2M compliant service capabilities.

Managing QoS in dynamic IoT environment contexts is a complex task [6–10],
which makes now compulsory autonomous management of QoS-oriented actions. In
this context, our final goal consists of upgrading the OM2M platform following the
Autonomic Computing model defined by IBM [11], based on the MAPE-K cycle (upper
part of Fig. 1a). [11] defines five successive levels of maturity to go from a manual
management of a given system to a fully autonomic system (Fig. 1b). At the second
level, which is targeted in this paper, monitoring tools can be used to collect metrics
from the system to detect anomalies (or “symptoms”), helping to reduce the time taken
to collect and synthesize information. Human skills are however required to analyze the
detected anomalies and execute corrective actions.

Several plans of management have to be considered within OM2M, each one
requiring sensors/effectors in order to be monitored/(re)-configured (lower part of
Fig. 1a). The first plan deals with the OM2M software: its goal is to collect metrics and
to manage actions that could be performed to improve QoS. As OM2M is a JAVA-based
platform, the second plan deals with the Java Virtual Machine, which offers all the
required resources for OM2M execution (threads, CPU, memory, etc.). The third and
fourth plans deal with computing resources and may concern the physical machine level
or the virtual machine level in a cloud-based deployment.

Towards Autonomic Middleware-Level Management of QoS for IoT Applications 291



3 Architectural Principles of the Monitoring Component

The monitoring component is aimed at collecting metrics (events) and generating symp‐
toms identifying QoS degradations. It is based on two main functionalities: the obser‐
vation of the monitored system through sensors, and the detection of symptoms, through
events aggregation, correlation and filtering actions (Fig. 2).

Fig. 2. Architecture of the monitoring component

The observation function is performed thanks to logical sensors integrated in the
managed entity for events collection. Metrics are collected at four levels; at the OM2M
level, such as: execution time, RTT, losses, plugin state, concurrent requests, web server
size. At the JVM level (on which OM2M is running), for metrics related to the resources
used by the OM2M platform (used memory, used CPU, running threads or number of
loaded classes). And at the virtual/physical machine level (on which the JVM is running),
with metrics related to machine state, total memory load, CPU load, used disk
percentage, etc.

Starting from the events collected by the observation function, the symptoms detec‐
tion function is aimed at detecting patterns identifying symptoms that have been pre
registered in a knowledge base. To identify these patterns, complex event processing

Fig. 1. (a) Autonomic architecture for OM2M QoS management – (b) Maturity levels towards
Autonomic behaviour

292 Y. Banouar et al.



 (CEP) is a technique that allows discovering complex events, by deduction, analysis
and/or correlation of elementary events. Among the different tools implementing CEP,
Esper (http://www.espertech.com/products/esper.php) is an open source Framework
that we have used in our study.

4 Validation of the Monitoring Component

4.1 Testbed Platform and Measurement Scenarios

Our validation approach of the monitoring component (that we claim as a basic proof
of concept) is based on an emulation testbed, which allows testing a real OM2M plat‐
form, confronted to an emulated traffic. The emulation platform (Fig. 3) is provided as
a set of web services consisting of injectors generating traffic, and of a controller whose
main function is to configure the injectors following a defined emulation scenario. To
avoid congestions at the sender side, injectors and controllers are launched on different
machines. The traffic is sent to a BeagleBone Black gateway executing the OM2M soft‐
ware.

Fig. 3. Overview of the emulation platform

The first injector (Injector_1) is supposed to generate a critical applicative traffic
corresponding to the periodic data from a critical sensor in a health care-oriented case
study, for which an RTT of 300 ms (threshold value) is required. Due to space limits,
we only consider a simple pattern consisting of four successive events indicating an
increasing RTT upper than the required threshold value, the last one being twice upper
the first one.

An Esper description of the pattern is provided hereafter:

The defined scenarios (see Table 1) are aimed at studying the impact of disruptive
traffics (Injectors_2 and 3) on the sensitive flow (Injector_1) for which a QoS has to be
maintained. Each injector is characterized by a number of HTTP requests (R), a request
method (e.g. POST, GET), a destination and a periodicity (P) in second (0 = concurrent
requests). Timestamps (t1, t2 and t3 (in seconds)) are collected to evaluate the evolution
of the RTT and the remaining inputs.

Towards Autonomic Middleware-Level Management of QoS for IoT Applications 293

http://www.espertech.com/products/esper.php


Table 1. Scenario testbed

Scenario Controller Injector 1 Injector 2 Injector 3 Observe
d metric

t1 t2 t3 R P R P R P

1 0 – – 200 0.5 – – – – RTTInj_1

2 0 1 – 200 0.5 200 0.5 – – RTTInj_1

3 0 1 1 200 0.5 200 0.5 200 0.5 RTTInj_1

4 0 20 40 260 0.5 300 0 200 0 RTTInj_1

4.2 Results Analysis

Scenarios results are provided on Fig. 4. Due to space limits, we focus on the evolution
of the RTTInj_1.

Fig. 4. (a) RTTInj_1 evolution for scenarios 1, 2 and 3 – (b) RTTInj_1 evolution for scenario 4

For the first three scenarios (Fig. 4a), the RTTInj_1 increases slightly when adding
disruptive traffic, without leading to degradation symptom detection; only some isolated
violation of the required threshold may be observed. Differently, in scenario 4 (Fig. 4b),
the RTTInj_1 of the observed traffic reaches much higher and repeated “out of threshold”
values that lead to a symptom alert (around the 40th event).

Next section describes the benefits of a simple adaptation action that could be done
by the administrator, once notified of this alert.

4.3 Benefits of Adaptation Action in Response to Symptom Detection

Once notified with a QoS degradation symptom, the administrator has to apply QoS-
oriented adaptation action(s). Before executing some adequate action(s), he/she has to
analyse the potential causes of the observed symptom(s) and then decide about the
action(s) to be performed. Let us recall that within a fully autonomic system, such
Analysis and Plan steps should be done by the system itself (transparently for the
administrator). These two steps being out of the scope of the AC maturity level targeted
in this paper (level two), we suppose here that the administrator has to decide by him/
her-self for the execution of a simple adaptation action that consists in activating/de-
activating a proxy at the entry of the gateway, allowing discarding part of the incoming
traffic (typically the disruptive traffic).

294 Y. Banouar et al.



Figure 5 illustrates the benefits of this adaptation action supposed to be performed
after the 75th event (the time taken between the symptom detection by the monitoring
component - around 40th event - and the execution action of the administrator being not
null). At that time, the administrator activates the proxy, in order to discard the traffic
coming from the injectors 2 and 3.

Fig. 5. Comparison of RTTInj_1 without and with the proxy mechanism

Through this scenario, one can notice that the proxy activation leads to a better RTT,
still being at a value much higher that the targeted threshold of 300 ms. The targeted
RTT is reached around the 169th event, due to the time taken to process the disruptive
traffic already in the OM2M gateway when the proxy has been activated.

5 Conclusions and Perspectives

This paper has presented our general vision for an autonomic Middleware-level QoS
management of IoT systems. With the aim to target the second maturity level of the AC,
the focus has been done on the Monitoring component of the AC paradigm, for which
proof of concept implementation principles have been proposed and tested through an
emulation platform aimed at stressing the OM2M open source platform. The performed
measurements allow concluding that QoS-oriented and resources-oriented symptoms
may be detected during execution of the applications (here emulated by traffic injectors),
and that simple (network-inspired) adaptation actions allow improving the observed
QoS-oriented.

Many perspectives are arising from this work. The enhancement of the set of more
complex symptoms is a first perspective. The enhancement of the set of mechanisms to
be activated is also under study: instead of activating/de-activating a traffic discarding
mechanism, a current improvement of the proposed proxy allows blocking a given
percentage of the traffic; similarly, we have also configured a delay-oriented proxy; other
mechanisms are going to be proposed, their choice and parameterization depending on
the targeted policy and the context. A current study is also to enhance the AC maturity
level of our system with the aim (as a first result) to make it transparent to the admin‐
istrator the step of activating manually the adaptation mechanism to be enforced when

Towards Autonomic Middleware-Level Management of QoS for IoT Applications 295



a symptom is detected. Finally, enhancing the architectural design of the AC components
is also an important perspective towards the deployment of a Middleware-level QoS
management system within a real IoT system.

References

1. Braden, R., et al.: Integrated Services in the Internet Architecture: An Overview. RFC 1633,
June 1994

2. Black, D., et al.: An Architecture for Differentiated Services. RFC 2475, IETF, December
1998

3. Duan, R., Chen, X., Xing, T.: A QoS architecture for IoT. In: 2011 International Conference
on Internet of Things (iThings/CPSCom), and 4th International Conference on Cyber,
Physical and Social Computing, pp 717–720 (2011)

4. RICHCLOUD White paper: Internet of things (IOT) (2012)
5. Ben Alaya, M., Banouar, Y., Monteil, T., Chassot, C., Drira, K.: OM2M: extensible ETSI-

compliant M2M service platform with self-configuration capability. Proc. Comput. Sci. 32,
1079–1086 (2011)

6. Skorin-Kapov, L., Matijasevic, M.: Analysis of QoS requirements for e-Health services and
mapping to evolved packet system QoS classes. Int. J. Telemed. Appl. (2010)

7. Jin, J., Gubbi, J., Luo, T., Palaniswami, M.: Network architecture and QoS issues in the internet
of things for a smart city. In: Proceedings of the ISCIT, pp. 974–979 (2012)

8. Ling, L., Shancang, L., Shanshan, Z.: QoS-aware scheduling of services-oriented internet of
things. Indus. Inform. 10, 1497–1505 (2014)

9. Zhou, M., Ma, Y.: A modeling and computational method for QoS in IoT. In: Proceedings of
Software Engineering and Service Science (ICSESS), pp. 275–279, June 2012

10. Ren, W.: QoS-aware and compromise-resilient key management scheme for heterogeneous
wireless IoT. Int. J. Netw. Manag. 21, 284–299 (2011)

11. Kephart, J., Chess, D.: The vision of autonomic comp. Computer 2003, 41–50 (2003)

296 Y. Banouar et al.


	Towards Autonomic Middleware-Level Management of QoS for IoT Applications
	Abstract
	1 Introduction
	2 Architecture Principles Towards QoS-Oriented Autonomic Management of Middleware Layer for IoT Systems
	3 Architectural Principles of the Monitoring Component
	4 Validation of the Monitoring Component
	4.1 Testbed Platform and Measurement Scenarios
	4.2 Results Analysis
	4.3 Benefits of Adaptation Action in Response to Symptom Detection

	5 Conclusions and Perspectives
	References


