
About Game Engines and Their Future

Dario Maggiorini1(B), Laura Anna Ripamonti1, and Giacomo Cappellini2

1 University of Milan, Milan, Italy
{dario,ripamonti}@di.unimi.it

2 Italian National Research Council, Milan, Italy
giacomo.cappellini@idpa.cnr.it

Abstract. In these last few years we are witnessing an increasing adop-
tion of video games in learning and teaching environments. This change
is coming thanks to the fact that video games allow students to take
a more active role in learning as they develop skills needed to succeed
in their professional careers. At the same time, we are also observing a
change in the way video games are implemented. Today, the existence
of very large teams with a multi-layered organisation calls for the adop-
tion of structured development approaches with associated environments.
These environments have been baptised game engines. Availability and
usability of game engines, in the near future, will positively influence
educational activities for the next generations. In this paper, we dis-
cuss the general structure of modern game engines and put into question
their current architectural approach. Our goal is to raise the attention of
the scientific community on the fact that re-baptised software stacks are
unlikely, on the long shot, to provide the flexibility and functionalities
required by game developers in the coming years. After a detailed discus-
sion of the possible problems on the horizon, an alternative approach for
a modular and scalable game engine architecture will also be presented.

Keywords: Game engines architecture · Game development · Scalabil-
ity · Distributed systems

1 Introduction

In these last years, the way developers implement video games is undergoing
a tremendous change. At the beginning of video games history, a very small
group – or even a single person – was usually in charge of software production.
As a matter of fact, we can see that many block-buster games in the ’80s such as
Pitfall!, Tetris, and Prince of Persia carry the name of a single developer. Today,
with the evolution of the entertainment market and the rise of projects with
seven (or eight) figures budget, this situation is changing. In order to (a) better
allocate competencies and effort, and (b) enforce code and resources reusability,
video games are now developed on top of software environments defined as game
engines.

Game engines, as largely discussed in [1], are usually organized as software
stacks rooted in the operating system with an increasing level of abstraction
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

B. Mandler et al. (Eds.) IoT 360◦ 2015, Part I, LNICST 169, pp. 276–283, 2016.

DOI: 10.1007/978-3-319-47063-4 28



About Game Engines and Their Future 277

Fig. 1. Summary of a general game engine architecture.

layer-by-layer, up to describing game mechanics. See, as an example, Fig. 1.
As it is easy to see from the picture, the adopted architecture is not really
different from other solutions adopted in non-gaming environments. As such,
given the different application field and performance requirements, a number of
limitations may arise for large-scale game development. As we will see, three
problems can arise with respect to the produced software: it may be monolithic,
it is centralised and may not scale upward, and it may be platform dependent.
Despite all the problems we just outlined, the final goal of this paper is not
to prove that modern game engines are not fit to the task. Actually, they have
demonstrated to be very good tools for the trade. Our aim here is to actually raise
the attention of the scientific community that such tools (re-baptized software
stacks) are unlikely, on the long shot, to provide the flexibility and functionalities
that will be required by game developers in the next generations. We strongly
believe that, in order to adapt to future evolutions, game engines should not just
target better performances and advanced functionalities, but also provide more
adaptable and serviceable internal structures.

2 Related Work

In the past, a fair number of scientific contributions has been devoted to the
internal data structures of game engines. Nevertheless, at the time of this writing
and to the best of our knowledge, only a very limited number of papers are
specifically addressing the engine architecture. The majority of the literature
seems to be focused on optimising specific aspects or services, such as 3D graphics
(e.g., [2]) or physics (e.g., [3]). Issues related to portability and development have
been addressed, among the others, by [4–6]. Authors of [4] propose to improve
portability by providing a unifying layer on top of other existing engines. In fact,
they extend each architecture with an additional platform-independent layer.
Authors of [5] focus on development complexity and propose a solution based
on modern model-driven engineering while in [6] an analysis of the open source
Quake engine is performed with the purpose to help independent developers



278 D. Maggiorini et al.

contribute to the project. Other contributions try to improve performances by
creating distributed implementations of existing engines [7–9]. Unfortunately, all
of them aim to increase performances only for specific case studies by applying a
distributed system approach to a specific internal service, such as the simulation
pipeline or the shared memory.

As it can be observed, none of the papers cited above is pointing to a com-
pletely new architecture. Anyway, we must also mention that not all existing
game engines have been designed as a library stack. For this, we can address
the Inform design system [10] for the Z-Machine [11]. With Inform, the algo-
rithmic description of a text adventure is compiled into a binary package. The
binary package is, in turn, executed by a Z-Machine, which is a software avail-
able for many hosting platforms. Unfortunately, Inform is limited to text-based
adventure games (such as Zork) and has never evolved toward modern interface
technologies. Nevertheless, we believe that modern game engines should recon-
sider Inform and Z-Machine as a viable approach.

3 Background on Game Engines

Although game engines have been studied and perfected since mid-’80s, a formal
and globally accepted definition is yet to be found for them. Despite this lack
of definition, the function of a game engine is fairly clear: it exists to abstract
the (sometime platform-dependent) details of doing common game-related tasks,
like rendering, physics, and input, so that developers can focus on implementing
game-specific aspects. To achieve this goal, game engines are usually divided
into two parts: a tool suite and a runtime component. The runtime component
assembles together all the internal libraries required for hardware abstraction
and to provide services for game-specific functionalities. A variable portion of
the runtime is usually linked inside the game or get distributed along with the
executable. The tool suite is, on the other hand, a collection of external programs
that can be used to manage all the data we feed to the runtime and to manipulate
the runtime itself.

Since the tool suit is not part of the internal architecture, in this paper we
are going to tackle only on runtime-related issues.

3.1 A Brief History of Game Engines

The first example of game engine dates back to 1984 with the game Doom. Doom
was not intended to feature a game engine. Nevertheless, it has been designed
with a number of software engineering best practices in mind. In particular, we
could find a strict separation between software modules and clear distinction
from software and data assets. Moreover, a development approach strongly ori-
ented to code reusability was enforced all over the project. To actually see the
concept of game engine popping out, we had to wait until mid-’90s for the release
of Quake Engine (by IDSoftware) and Unreal Engine (by Epic Games). Starting
from this point, games opened up to user customisation and, most important



About Game Engines and Their Future 279

of all, their engines have been regarded by software companies as a separate
product to be sold to game developers. As of today, we have companies making
games and selling their internal technology (like Epic Games) competing with
companies focused only on distributing and supporting a game engine platform
(Such as Unity Technologies).

Of course, game engines have not been immune from the open source move-
ment. Many open source projects exist; they can provide specialised functionali-
ties (e.g., Ogre3D) or a full application stack (e.g., Cocos2D). On the other side of
the spectrum there are proprietary game engines, which are kept secret by gam-
ing companies and are usually born around a specific project. Their architecture
can be only guessed. Nevertheless, it is known that engine-focused companies
usually fish their architects from gaming companies. Since they are also propos-
ing us a library stack, one may presume that proprietary/private engines are
following the same philosophy.

4 Potential Shortcomings of Current Game Engines

As already briefly presented in Sect. 1, creating a software by deploying code on
top of a library stack may lead to potential problems when trying to create a
video game. In this section we are going to look into these problems in detail
and discuss what should be done to overcome them.

4.1 Monolithic Software

Being monolithic means that a gaming software is completely self-contained and
developers must rebuild/relink the while project at every change. This global
rebuild is required also because, as already mentioned, a portion of the engine is
usually distributed together with the game. Since, in modern productions, the
size of source code and assets is growing exponentially, a global rebuild might
become a significant bottleneck for large projects. Even in small projects, being
able to perform global rebuild means to have a clean and well synchronised source
tree and requires good coordination among developers to avoid build breaks.

We should provide a way for developers to modify and extend games by
means of a plug-in approach with a very fine granularity, even at runtime. This
way, only new and changed functionalities will require compilation as standalone
components. Moreover, a malfunctioning component is not going to compromise
the entire project for other developers.

Technology exists and is already available for a program to load binary code
on demand at runtime. All modern languages feature dynamic class loading;
moreover, dynamic libraries management facilities are already included in main-
stream operating systems. It is technically possible to compile the object code
for a game item (only), have the engine recognise it, and finally use the class
loader to draw the code inside to be immediately available in the game.



280 D. Maggiorini et al.

4.2 Centralised Solution

Centralised software is usually difficult to scale upward. Scaling up is required
every the computational power required by a software component is exceeding
the capacity of the hosting system. This is usually achieved by shedding the
offered load between multiple machines. In particular, it is a desired behaviour
for online games where many users connect simultaneously to the same (server)
engine. In current implementations, the game itself must be aware of the loca-
tion of a service (on the same machine or elsewhere) and implement a distributed
computation. Considering the recent trend in online gaming [12], especially with
MMOs (Massively Multiplayer Online games) and MOBAs (Multiplayer Online
Battle Arena) ruling the market, the possibility to transparently relocate a com-
ponent without restarting the server – and interrupting the service – will be
an incredible benefit for next generation games. Just consider that the top-tier
MOBA League of Legends reported, in 2014, 7.5 millions concurrent players at
peak time.

Inside a library stack, modules communicate by means of function/method
calls. While remote function call is possible in many ways, it is usually bound
to a language (e.g., Apache River, only for Java) or a platform (e.g., Microsoft
DCOM). An high performance messaging system between modules provided by
the engine itself should be considered instead. The engine can simply remap an
address from local to remote and vice versa when a component is relocated.

Technologies implementing lightweight and high-performance messages
exchange are already available (see, e.g., mbus [13]). Of course, performances may
be an issue when relocating a module over the network. Anyway, we already have
many time-critical services provided over local area networks with good results
(e.g., iSCSI [14]). Moreover, we must remember that relocation is usually per-
formed across a dedicated infrastructures and not over the Internet; cross-traffic
is definitely not an issue here.

4.3 Platform Dependency

Even if the engine claims to be multi-platform and uses its lower layers to man-
age adaptation for vendor-specific hardware, seamless deployment across plat-
forms is not always guaranteed. This behaviour may depend on a number of
causes: from undocumented/proprietary APIs preventing actual porting to loss
of performances due to a library optimised only for specific hardware. Today, to
address this issues, developers are required to write code that, inside the same
engine, behave – or compile – differently, based on the underlying platform. As
a result, the engine is technically cross-platform, but developer skills and code
are likely to be diversified between deployment platforms. Needles to say, this
is going to negatively impact team management and production time in many
ways.

Once again, a modular architecture may be a viable solution to address the
problem we just outlined. Using messages for inter-modular communication can
also be beneficial since they can be platform independent and are easier to stan-
dardise. Nevertheless, this issue is not purely technical and involves marketing



About Game Engines and Their Future 281

policies from hardware vendors. As a matter of fact, in many cases only vendors
can write device drivers, as hardware interface are undisclosed for technical and
opportunity reasons. At least, an approach based on software plug-in will help
developers to easily modify, upgrade, or deactivate problematic and unsupported
software modules.

5 An Alternative Approach

As already discussed in the previous section, potential solutions for each of the
envisioned problems are already available. Putting all these solutions together
can lead us to propose an alternative architecture for game engines.

We already know that this new architecture should be modular and provide
a messaging service between modules. These modules must not be only game-
specific but may also implement engine internal services. To achieve this, the
engine needs just to implement some sort of sandbox where modules can be
efficiently swapped in and out at runtime, plus the messaging system and a basic
soft real-time scheduler. Moreover, the messaging system can also be distributed
and link engines on different machines to perform transparent load shedding. An
existing library stack could be easily transformed in modules inside one or more
engines. If we need to preserve the library hierarchy, a message policy subsystem
can be easily added.

What we just exposed lies in the middle between a runtime environment (like
Java or CLI) and a micro-kernel operating system (such as Amoeba or QNX)
with added distributed functionalities. See Fig. 2.

As a matter of fact, since our solution can be obtained from the combina-
tion/adaptation of existing technologies, a microkernel game engine seems to
be actually implementable. Nevertheless, questions remain open about perfor-
mances loss and willingness of companies to adopt it. While it is difficult to argue
about performances without a working prototype, some considerations can be
drawn on a perspective adoption. From an industrial perspective, there is only

Fig. 2. Possible architecture for a microkernel game engine.



282 D. Maggiorini et al.

one undesirable constraint: in order to implement an efficient dynamic loader,
a reflection/introspection enabled language is required. As of today, for perfor-
mance reasons, the main development language is in many cases C++, which
does not natively support dynamic class loading. It is possible to add dynamic
class loading to C++, with a significative loss in performances. As a result, it will
be difficult that the changes we envision will take hold in corporate production
pipelines with the current generation of developers, unless the scientific com-
munity will be able to provide a solution for a dynamic management of classes
inside a sandbox based on C++.

6 Conclusion and Future Work

In this paper we analyzed the current approach for the internal structure of mod-
ern game engines. Our intention was to raise the community attention on the
fact that this approach is unlikely to provide the flexibility and functionalities
required by game developers in the next generations. We believe that, by devel-
oping a game on top of a library stack, the resulting software may suffer from
being monolithic, centralised, and platform-dependent. We discussed all these
issues in detail and it seems that solutions are already available by switching
toward a microkernel-like architecture.

In the future, we are planning to create a prototype game engine based on
the envisioned architecture and verify if it can be valid substitute for current
engines with respect to performance and functionalities. This will be useful to
actually deploy widely distributed games such the ones envisioned in [15].

References

1. Gregory, J.: Game Engine Architecture. A. K. Peters/CRC Press, Boca Raton
(2014). ISBN 978-1466560017

2. Cheah, T.C.S., Ng, K.-W.: A practical implementation of a 3D game engine. In:
International Conference on Computer Graphics, Imaging and Vision: New Trends
(2005)

3. Mulley, G.: The construction of a predictive collision 2D game engine. In: Proceed-
ings of the 8th EUROSIM Congress on Modelling and Simulation (2013)

4. Darken, R., McDowell, P., Johnson, E.: Projects in VR: the Delta3D open source
game engine. IEEE Comput. Graph. Appl. 25(3), 10–12 (2005)

5. Guana, V., Stroulia, E., Nguyen, V.: building a game engine: a tale of modern
model-driven engineering. In: Proceedings of the 4th International Workshop on
Games and Software Engineering, GAS (2015)

6. Munro, J., Boldyreff, C., Capiluppi, A.: Architectural studies of games engines
the quake series. In: International IEEE Consumer Electronics Society’s Games
Innovations Conference, ICE-GIC (2009)

7. Xun, W., Xizhi, L., Huamao, G.: A novel framework for distributed internet 3D
game engine. In: Proceedings of the Third International Conference on Convergence
and Hybrid Information Technology, ICCIT 2008 (2008)



About Game Engines and Their Future 283

8. Gajinov, V., Eric, I., Stojanovic, S., Milutinovic, V., Unsal, O., Ayguade, E.,
Cristal, A.: A case study of hybrid dataflow and shared-memory programming
models: dependency-based parallel game engine. In: 26th International Sympo-
sium on Computer Architecture and High Performance Computing, SBAC-PAD
(2014)

9. Huiqiang, L., Wang, Y., Ying, H.: Design and implementation of three-dimensional
game engine. In: Proceedings of World Automation Congress, WAC (2012)

10. Nelson, G.: Natural Language, Semantic Analysis and Interactive Fiction.
Whitepaper (2006)

11. The Z-Machine Standards Document version 1.1 (2014). http://inform-fiction.org/
zmachine/standards/z1point1/index.html. Accessed 7 Aug 2015

12. Gerla, M., Maggiorini, D., Palazzi, C.E., Bujari, A.: A survey on interactive games
over mobile networks. Wirel. Commun. Mob. Comput. 13(3), 212 (2013)

13. Ott, J., Perkins, C., Kutscher, D.: A message bus for local coordination, IETF
RFC 3259 (2002)

14. Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., Zeidner, E.: Internet small
computer systems interface (iSCSI), IETF RFC 3720 (2004)

15. Maggiorini, D., Quadri, D., Ripamonti, L.A.: Opportunistic mobile games using
public transportation systems: a deployability study. Multimedia Syst. J. 20(5),
545 (2014)

http://inform-fiction.org/zmachine/standards/z1point1/index.html
http://inform-fiction.org/zmachine/standards/z1point1/index.html

	About Game Engines and Their Future
	1 Introduction
	2 Related Work
	3 Background on Game Engines
	3.1 A Brief History of Game Engines

	4 Potential Shortcomings of Current Game Engines
	4.1 Monolithic Software
	4.2 Centralised Solution
	4.3 Platform Dependency

	5 An Alternative Approach
	6 Conclusion and Future Work
	References


