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Abstract. In this paper, we propose a simple and scalable optimization
model for the deployment of road site units (RSUs). The model takes
advantage of the inherent stochasticity provided by the vehicles’ move-
ments by using mobility traces to determine which are the best positions
to place RSUs to maximize connectivity in a multi-hop VANET scenario
and keep the number of RSU as low as possible. Our simulations results
validate that the solutions offered by our model are accurate.
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1 Introduction

One of the characteristics that make the study of vehicular ad-hoc networks
(VANETs) challenging is the stochasticity introduced by the mobility of the
vehicles. In this work, we propose a stochastic optimization model (SOM) [1] for
the optimal placement of Road Side Units (RSU) over a geographical area. The
aim of our mixed integer linear model is to choose the minimum number of RSU
to be deployed in a specific area such that moving vehicles can reach some fixed
infrastructure point in a multi-hop fashion regardless their position. To do that,
our model does not rely in any deterministic (particular) vehicle distribution to
compute the connectivity information between vehicles and RSUs. Instead, our
model considers a representative set of different positions of vehicles that can
be extracted from real vehicle movements traces as [7], which are more trustful
and are becoming more popular among the research community to test their
proposals. Therefore, our model provides a solution that is the best for the whole
set of movements. Taking uncertainty into account by means of different vehicles
positions to compute the connectivity information, gives a solution to the model
that is more reliable than only using a deterministic connectivity matrix.

The rest of the paper is organized as follows: Sect. 2 explains the proposed
model in detail. Then, the process to obtain the multi-hop connectivity infor-
mation is described in Sect. 3. After that, Sect. 4 presents results obtained with
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a solution provided by our model in a realistic scenario. Finally, conclusions and
future work are drawn in Sect. 5

2 The Problem Formulation

We propose a two-stages stochastic optimization model with recourse [1] to
deploy in an optimal way the RSUs over an area. In our problem, the first
stage is represented by the subset of RSU that has to be selected prior to know
the distribution of vehicles in the area. On the other hand, the best association
between vehicles and the chosen RSUs is done in the second stage after the dis-
tribution of vehicles is known (when the stochasticity is disclosed). The results
of our model are based on the multi-hop connectivity information. In addition,
the model considers an approximation of the effective capacity of the wireless
channel due to the multi-hop transmission and takes into account the maximum
demand that an RSU can serve.

2.1 Parameters of the Model

Our proposal uses connectivity information between vehicles and RSU as input
parameter. Let R be the set of candidate RSUs among which our model chooses
the most valuable to maximize the packet delivery ratio from vehicles to the
RSU deployed. The set R includes an RSU named r∞ to which every node
can connect. If in the solution of the model a vehicle connects to this RSU, it
means that this vehicle is disconnected. The use of this artificial RSU simplifies
the model. Each RSU r ∈ R has associated a traffic load capacity Cr and an
installation cost Costr in the sets C and Cost, respectively.

As we anticipated, the model uses a set of observations of vehicles’ positions
S in order to consider the randomness of this factor. Each observation s ∈ S is a
snapshot of vehicles located at different positions obtained from movement traces.
Let V be the set of vehicles considered in the model. In particular Vs is the subset of
vehicles which appear in the scenario s. Each vehicle v ∈ Vs has associated average
traffic load Ls,v. This data set is useful to test different traffic loads among nodes,
for instance, the fleet of buses in the city. H represents the set of path lengths
allowed by the model to connect nodes with an RSU. In the model, the maximum
route length is denoted by hmax = |H|, that is the path length from all the vehicles
to the artificial RSU. No other RSU is connected to a vehicle by a path of length
hmax. Related to the set H is the set P , that are the penalty factors since it uses
different path lengths. In this work, these factors are the mean numbers of times
that a message should be sent to get one successful reception as a function of the
number of hops, according to the results obtained in [8]. Phmax is big enough to
penalize the fact that a vehicle is not connected to a real RSU.

CV R is the set of tuples 〈s, h, v, r〉 that provides the information about the
connectivity between vehicles V and the set of candidate RSU R. The presence
of the tuple 〈s, h, v, r〉 in the set CV R means that vehicle v can reach RSU
r in the scenario s through h hops. Notice that 〈s, hmax, v, r∞〉 for all v ∈ Vs
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are always present in the set because we consider that all nodes can reach the
artificial RSU.

2.2 Variables of the Model

Our model uses the following variables to determine which gateways should be
selected. S is a boolean variable that indicates if an RSU r ∈ R is chosen for the
solution (Sr = 1) of the model. The set S is the first stage decision variables in
the structure of our stochastic problem.

Rts is a set of variables in the [0, 1] domain that associates a portion of the
traffic load of a vehicle to an RSU with which it has connectivity. For instance,
Rtss,h,v,r = 0.8 indicates that the 80 % of the traffic load that belongs to vehicle
v can be received by RSU r through a route of h hops in the scenario s. Conse-
quently, Rts plays the role of second-stage variables in the stochastic problem,
which are decided for each scenario and after that the RSU has been selected.

2.3 The Stochastic Model

The goal of the proposed model is to select the minimum number of RSUs
to maximize the multi-hop connectivity between nodes and fixed infrastructure
points. The objective function is shown in Eq. (1). The first term of the objective
function adds the installation costs of the chosen RSUs, so the model will try
to use the minimum number of them. On the other hand, the second term adds
the whole traffic generated in the network. The model tries to connect vehicles
with RSUs by employing short paths because we are imposing increasing penalty
factors as a function of path lengths. Hence, the solution of the model will select
RSUs easily reachable from a high number of nodes using the minimum number
of hops in the different scenarios. It is worth to mention that if the penalty
factor for disconnected (Phmax

) nodes is greater than the maximum installation
cost of a gateway, then the model will not leave disconnected nodes to avoid
activating RSUs. Moreover, if the specific interest of user’s model is to detect
the best positions to install the RSUs, regardless the installation cost, then this
value must be the same for the whole set of candidate RSUs.

min
S,Rts

∑

r∈R

SrCostr +
∑

〈s,h,v,r〉∈CV R

Rtss,h,v,rPhLs,v (1)

s.t.
∑

h∈H,r∈R:

〈s,h,v,r〉∈CV R

Rtss,h,v,r = 1, ∀v ∈ Vs, s ∈ S (2)

Rtss,h,v,r ≤ Sr, 〈s, h, v, r〉 ∈ CV R (3)
∑

v∈V,h∈H:

〈s,h,v,r〉∈CV R

Rtss,h,v,rPhLs,v ≤ Cr, ∀s ∈ S,∀r ∈ R\{r∞} (4)

∑

r∈R\{r∞}
Sr ≤ MaxR (5)
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Constraints from Eqs. (2) to (5) guarantee a proper solution of the problem.
The first condition in Eq. (2) states that the traffic load of every vehicle v of the
scenarios in S has to be served by some subset of candidate RSUs reachable from
the vehicle through multi-hop routing. Notice that in this subset the artificial
RSU r∞ can be included, which is reachable for all vehicles at the maximum
number of hops hmax. In this case, only the portion of the traffic served by
r∞ will be highly penalized. Also, notice that any Rtss,h,v,r = 1 means that
the whole traffic of v can be served by a unique RSU r, and this is the closest
solution to the real behavior of a VANET, in which balance of traffic loads
(fractional values of Rtss,h,v,r) is unlikely. The constraint of Eq. (3) is related
to the previous constraint and it basically establishes that if a portion of the
traffic load of vehicle v is served by the RSU r (i.e., Rtss,h,v,r > 0) then the
RSU r must be included in the solution Sr = 1. This is the condition that forces
the model to activate RSUs in the solution and search from the best ones. Best
RSUs are those that can receive as much traffic load as possible.

An important constraint of the proposed model provided the realism that
it adds to the solution, is written in Eq. (4). This condition imposes that the
maximum capacity load of each candidate RSU r ∈ R can serve, will not be
exceeded by the connected vehicles to them. This constraint does not apply to
the artificial RSU used by the unserved traffic loads. The last restriction, Eq. (5)
sets the maximum number of RSUs (MaxR) that the solution can have. If such
limitation is not at stake, it can be removed of the model.

3 Connectivity Information

In this section, we describe how to obtain the input information about multi-hop
connectivity through the boolean matrix multiplication of the adjacency matrix
among vehicles As and the adjacency matrix between vehicles and candidate
RSU notated as Bs. Theses matrices represent the connectivity at 1 hop in the
network. A non-zero position in this kind of matrices represents that the nodes
involved can communicate between them. In particular Bs stores the information
on which vehicles can communicate with RSUs directly. The same information
for h hops, called Bs,h, is computed as follows:

Bs,h = Ah−1
s Bs (6)

Notice that, Bs,h contains information about vehicles that can connect to
RSUs using from 1 to h hops. Bs,h is the most expensive step in the process
with a complexity of O(n3 + n2m) for each hop in each of the scenario, where n
is the number of vehicles and m the number of RSUs. The connectivity matrix
Cs,h, which tells us which are the vehicles that are been connected to a RSU
using h hops, is obtained as:

Cs,h = Bs,h − Bs,h−1 (7)

Therefore, the position Cs,h,v,r of this matrix, which indicates if the vehicle v
can reach RSU r will be 1 only the first time that it can communicate with that



A Optimization Model for RSU Deployment 267

RSU and 0 otherwise. The set of tuples of the CV R parameter are constructed
from the non-zero positions of Cs,h matrices. Notice that Cs,1 = Bs for each
scenario s ∈ S.

4 Results of the Model

We use a synthetic movement trace to determinate which is the best position
to locate one RSU among the five candidate positions shown in Fig. 1 within
an urban area of Barcelona. Once the model provides a solution, we remove
the chosen RSU’s position and solve the model again with the remaining set of
candidate RSUs until this set is empty. The optimization solver that we use is
CPLEX [4]. To test how well the solutions of our model behave, we compare
them to simulation results from ten simulations for each one of the candidate
RSUs. We use Estinet [2] and C4R [3] to perform this task. The settings of the
model and the simulations are depicted in Table 1.

The locations suggested by our stochastic model to install one RSU among
the candidate set depicted in Fig. 1 in decreasing order are: RSU 1, RSU 5,
RSU 2 , RSU 4 , RSU 3. In fact, our model gives a draw between RSU 2 and
RSU 4 (the value of the objective function is the same activating these RSUs).
However, the best order revealed by the simulation results showed in Fig. 2 is
RSU 1, RSU 5, RSU 2, RSU 4, RSU 3. The real order is clearly manifest in both
vehicle densities if we look at the performance of the packet delivery ratio (PDR)
in Fig. 2a and the average delay in Fig. 2b. On the other hand, the performance
difference in the average number of hops, in which our model relies, is not so
clear, especially between the results provided by RSU 2 and RSU 4.

The results presented in this section validate the reliability of the solutions
of our stochastic model to detect the most suitable locations to install RSUs in
a city. Additionally, the results show that badly chosen positions could lead to
a very poor PDR and high delays.

Table 1. Simulation settings.

Parameter Value

Area 1.5 km × 1 km

N◦ of nodes/RSUs 100 and 150/5

N◦ hops in model 5 Hops

Simulation time 300 s

N◦ scenarios in model 20 scn, every 15 s

Transmission range ∼400m (LOS)

Mobility generator C4R [3]

MAC specification IEEE 802.11p

Bandwidth 6Mbps

Packet generation time T ∼ U(2,6) s E(T ) = 4 s

Packet size 1000 bytes

Routing protocol MMMR [6]

Fig. 1. Considered scenario. Barcelona
from OpenStreetMap. 5 candidate
RSUs.
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Fig. 2. Performance metrics results.

5 Conclusions and Future Work

In this paper, we have presented a stochastic optimization model for the optimal
placement of Road Site Units. The proposed model is fed by the multi-hop
connectivity information provided by different vehicles distribution, which can
be obtained from different realistic movement traces. Our tests suggest that our
model detects correctly the most important positions to locate RSUs.

Our model could be used as a second stage in the deployment process of
RSUs to select the most important RSU to be installed in the geographical area.
A first step is to select the candidate positions of the gateways to cover the area.

Our model can be solved for large-scale data sets, which in turns means
big geographical areas through the Benders decomposition method [5]. Future
work includes the formulation and solution of our stochastic model using this
well-known optimization technique and employs real vehicle movement traces.
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