
Controlled Android Application Execution
for the IoT Infrastructure

Michael N. Johnstone, Zubair Baig(B), Peter Hannay, Clinton Carpene,
and Malik Feroze

School of Science and Security Research Institute,
Edith Cowan University, Perth 6027, Australia

z.baig@ecu.edu.au

Abstract. Android malware has grown in exponential proportions in
recent times. Smartphone operating systems such as Android are being
used to interface with and manage various IoT systems, such as building
management and home automation systems. In such a hostile environ-
ment the ability to test and confirm device health claims is important
to preserve confidentiality of user data. This paper describes a study to
determine whether an Android device could be secured to prevent mal-
ware from executing in parallel with trusted applications. The research
also sought to determine whether the system image could be protected
from unauthorised modifications. A prototype scheme for meeting the
above requirements was developed and tested. It was observed that the
prototype succeeded in preventing unauthorised modification to the sys-
tem image of the test device. However, the prototype failed to prevent
unauthorised IPC calls when in single process mode.
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1 Introduction

The evolution of distributed computing, most recently evinced by the Internet-of-
Things (IoT) is considered to be an essential driver of contemporary information
technology. The use of embedded microprocessors within a plethora of hetero-
geneous device types has been facilitated by substantial increases in available
network bandwidth. Consequently, household devices such as televisions, refrig-
erators and washing machines are all embedded with computers that monitor
device activity, log events, and transmit useful and pre-defined information to
a centralised server for further processing and/or action. Mobile devices such
as smartphones and smartbooks can serve as decentralised data collection and
processing points within an IoT infrastructure. The privacy and security require-
ments within an IoT context will vary depending upon the IoT devices in use.
For instance, a mobile phone connected through a 3G/4G communication chan-
nel to the Internet will demand a set of security controls based on large keys and
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a requirement for extensive information processing. Alternatively, a resource-
constrained RFID tag may likely require a less resource demanding secret-key
verifier based on smaller key lengths and efficient algorithms.

Whilst mobile devices provide an ideal central controller for household IoT
devices as seen by the expansion of Home Automation Networks, the underly-
ing operating system poses serious security concerns. The popularity of mobile
devices has increased exponentially, and applications installed and executed by
end-users routinely process and transmit sensitive data (e.g., banking and online
shopping applications). Private user data can be compromised by an adversary
through simple social engineering efforts as well as through sophisticated step-
wise attacks that may involve the installation of malware onto a mobile device
for subsequent invocation. The threat landscape for mobile platforms has been
increased many-fold because popular end-user applications can be installed at
the click of a button (thus highlighting the tension between competing non-
negotiable requirements, namely security and ease of use). An example is an
augmented version of the ZeuS banking Trojan [1] which appears as a legitimate
application that upon execution transmits user credentials to a remote (attacker)
machine. Emerging threats against mobile devices pose an even greater challenge
for security architects of the IoT infrastructure. End-users do not identify the
same security issues with mobile devices (compared to desktop devices) as noted
in a survey by Valli et al. [2]. The need for controlled application execution on
mobile devices, within a trusted context, cannot be understated. In this paper, we
document and examine a prototype of a controlled mobile device trust platform
for Android devices that ensures a secure application execution environment.

The remainder of the paper is organised as follows. Section 2 discusses related
work done in the area of mobile device security. In Sect. 3, we present the pro-
totype implementation of a controlled execution environment for Android appli-
cations. Section 4 discusses the tests that were performed against the Controlled
Access Prototype. Section 5 describes the results of the study. Finally, in Sect. 6,
we conclude and provide suggestions for further research.

2 Related Work

As pointed out by Löhr et al. [3], secure boot is a basic trusted computing
concept. Löhr et al. observe that secure boot requirements for mobile devices
have been collected in the Open Mobile Terminal Platform recommendations.
The problem of secure boot is bound by three constraints or properties, described
by Löhr et al. as: (1) The integrity of software loaded on the system must be
preserved, otherwise malicious software could run without being detected; (2)
The system should always boot to a defined secure state (or fail to boot at all),
else attackers could violate security by forcing the system into an insecure state;
and (3) Modifications of the operating system or application binaries must still
be allowed, otherwise, software updates would be impossible.

Probably the first attempt at secure boot on an x86 platform was the AEGIS
system [4] which used digital signatures as integrity checks and allowed recovery
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using a trusted repository. This concept still exists in Windows 8, which imple-
ments secure boot via a signature check for each item of boot software, although
this has already been compromised (see [5]). Mobile devices, by their nature,
may not have access to a trusted repository.

Kostiainen et al. [6] discuss several security issues that exist on several
mobile device operating systems (including Android), but their analysis appears
focussed on post-boot issues such as access control and permission granularity.
Such issues would be important, however, if a secure boot failed i.e. it booted a
device into an insecure state. Shabtai et al. [7] assert that Android devices are
well-guarded in their normal state. Shabtai et al. conducted a risk analysis of the
Android platform and concluded that corrupting or modifying private content
in various forms, was a minor impact risk with an unlikely or possible likelihood
of occurrence. We content that this is an optimistic analysis, especially in the
context of Gostev’s [8] comment that “two years of smartphone virus evolution
are equivalent to twenty years of work in computer viruses”.

Shabtai et al. [7] also notes that one of the security mechanisms of Android
requires that “each application runs in its own virtual machine”. This provides
a measure of safety, but King et al. [9] evaluated virtual machine-based rootkits,
the result being that they were able to subvert Linux-based systems with a
proof-of-concept virtual machine-based rootkit. More specifically, Vidas et al.
[10] provide a survey of current Android attacks.

Dietrich and Winter [11] highlight the need for a secure boot process
on mobile devices and state that, whilst the Mobile Phones Working Group
(MPWG) have outlined a secure boot process, the detail has been left to indi-
vidual manufacturers to implement, thus giving manufacturers some flexibility.
This flexibility, however, can lead to security issues because of the multiplicity
of approaches that fit the outline provided by the MPWG.

Hendricks and van Doorn [12] contend that existing secure boot standards are
not enough and that all devices should be checked, not just those attached to the
CPU. Their claim was based on the assertion that modern computers consisted
of semi-autonomous sub-systems containing field-upgradable firmware. Despite
this assertion being over a decade old, it bears some similarity to devices that
populate the Internet of Things, latterly the Internet of Everything.

3 Controlled Access Prototype Implementation

By design, the Android application framework includes various components to
encourage functionality reuse. For example if an application that wishes to make
a web request, it could request that another application make the request on its
behalf. This reuse is achieved through application programming interfaces (APIs)
such as activities, services, broadcast receivers and content providers [13]. Each
of these features enable inter-process communication in various ways. Some of
these are focussed on directly addressed communication and others are simply
ways to request a specific item of functionality, allowing any other application
to serve these requests.
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A number of vulnerabilities have been identified with these APIs. These
include SQL injection attacks and information theft [14]. In order to mitigate
these issues it has been left to the developers of Android applications to imple-
ment defences in order to protect their application from any others that may be
running. As new attacks are developed it may be that even the most carefully
developed application becomes susceptible to these attacks. Of course there is
still the threat posed by vulnerabilities to the Android operating system itself,
which may not be able to be mitigated by the application developer. Existing
approaches to address this issue have relied on implementing security layers on
top of the existing Android framework, however this doesn’t solve the underlying
issue for the potential of interprocess communication based attacks or attacks
based on other mechanisms [15]. Attacks have been implemented which do not
rely on inter-process communication but instead through shared memory, show-
ing the potential for non-inter-process communication driven attacks [16].

The proposed prototype aims to address this problem by preventing simulta-
neous application execution outright, via modification of the underlying Android
operating system and making use of integrity checking measures to ensure that
the operating system itself is not compromised.

The prototype developed aims to address two key requirements of the
Android mobile platform:

– Device state at time of execution: The state of the device can always be ver-
ified to not have malicious applications running in parallel with the current
application.

– Device base state: The mobile device should have protection mechanisms
against unauthorised modification to the base system.

A two-part solution is proposed to meet the requirements. The first part is
to limit the number of running applications to one, preventing malware from
running in parallel with the application. Second, to use secure boot which pre-
vents operating system modifications. This process results in a situation in which
malware cannot be injected into the system image or cause other unauthorised
changes to the platform.

Limiting the number of running applications to one, ensures that only one
application is running at any point in time. As a result the operating system
will force any applications other than the foreground application, to terminate
(excluding core system processes).

The verified boot feature, which was introduced in Android 4.4, aims to assure
the device state. This process uses an optional kernel feature called “device-
mapper-verity (dm-verity)”. The dm-verity feature provides a means for the
device to conduct integrity checking of block devices. Consequently, dm-verity
can be used to prevent rootkits, and other unauthorised modifications to the
system image.

Any process on the Android platform that runs with root privileges can
bypass detection by anti-malware applications or indeed the operating system
itself. The software has this capability as it is running with privileges higher than
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Fig. 1. Cryptographic hash tree [17].

or at the same level as the software intended to detect malware. These privileges
essentially enable the software to misrepresent itself or conceal itself altogether.

Block devices form the underlying storage layer for Android systems. They
can be examined using dm-verity to ensure that the device matches an expected
configuration. Configuration validation is achieved through the use of a cryp-
tographic hash tree. Every block (which is typically of 4k block size) is hashed
using SHA-256 and the result stored in the hash tree. These hashes are aggre-
gated through each layer (as depicted in Fig. 1) until Layer 3, where the root
hash is computed. In practical terms this means that only the root hash needs
to be verified to confirm integrity of the entire hash tree. In order to modify
any of the blocks, the cryptographic hashing function (SHA-256 in this case)
would need to be broken for identically sized inputs. At access time, each block
is verified, which reduces overhead at boot time.

This solution ensures that a device meets the health requirements at any
given time. Using Secure Boot ensures that the operating system has not been
modified in any way. If the system image is changed in anyway, the device will
fail to boot. If the device boots successfully, it is a guarantee that the device
did not allow malware to load at boot time. Secure Boot’s task is finished once
the device has booted. As such, need is established for post boot mechanisms to
allow execution of software without the risk of malware running in parallel, thus
compromising the integrity of the whole system. For this purpose, the application
limiting functionality is put in place. Limiting the number of parallel applications
to one guarantees that no malware can run in the background while the target
application is being executed.

To limit the number of parallel applications, we need to modify the Android
source code. In order to achieve this functionality, there are two files that
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need to be changed, namely, DevelopmentSettings.java and Activity
ManagerNative.java. DevelopmentSettings.java is located at: /packages/
apps/Settings/src/com/android/settings/. The changes required in this file
are as below:

Line 1251: mAppProcessLimit.setValueIndex(i);
to: mAppProcessLimit.setValueIndex(1);

Line 1251: mAppProcessLimit.setValueIndex(i);
to: mAppProcessLimit.setValueIndex(1);

Line 1252: mAppProcessLimit.setSummary(
mAppProcessLimit.getEntries()[i]);

to: mAppProcessLimit.setSummary(
mAppProcessLimit.getEntries()[1]);

Line 1256: mAppProcessLimit.setValueIndex(0);
to: mAppProcessLimit.setValueIndex(1);

Line 1257: mAppProcessLimit.setSummary(
mAppProcessLimit.getEntries()[0]);
to: mAppProcessLimit.setSummary(

mAppProcessLimit.getEntries()[1]);
Line 1264: int limit = newValue !=

null ? Integer.parseInt(newValue.toString()) : -1;
to: int limit = newValue != null ? 0 : -1;

ActivityManagerNative.java is located at /frameworks/base/core/java/
android/app/. The changes required in this file are as below.

Line 1163 int max=data.readInt();
to: int max = 0;

Line 1171 int limit = getProcessLimit();
to: int limit = 0;

Once this is done, we can build a system image from this modified Android
source code. This system image is then used to implement dm-verity for ensuring
secure boot. The steps are as follows:

1. Create system and boot image,
2. Create hash trees for both images,
3. Generate dm-verity tables,
4. Sign generated tables,
5. Concatenate dm-verity table and signature block to generate verity metadata,

and
6. Concatenate tables, signature block and metadata.

The hash tree is at the core of the security control that enables secure boot,
and is implemented by the dm-verity kernel feature. Every block (in this case
4k in size) in the block device is cryptographically hashed with SHA-256. These
hashes form layer 0 of the hash tree. Next, the SHA-256 hashes of layer 0 are
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concatenated into 4k blocks, and again each block is hashed with SHA-256. This
forms layer 1 of the hash tree. This process is continued until the resulting layer
n can be condensed into a single 4k block. Finally, the hashes at layer n are
aggregated and hashed using SHA-256 to form a single, root hash value that
serves as the integrity checker for the entire filesystem. If there is a block in a
layer that is not naturally filled to the block size, the block is padded out with
zeroes.

Subsequent to the creation of the root hash and salt, the dm-verity table
is created and signed. The table itself is comprised of a reference to the block
device, the block size, salt and root hash value. The table is signed with an
RSA key of length 2048 bit ([17]). Next the verity metadata block is generated
through the concatenation of the signature and the dm-verity table.

4 Controlled Access Prototype Evaluation Process

The device state and malware claims are both evaluated individually. Evaluation
of the malware claim is trivial. Once the operating system has booted the set-
tings menu can be accessed and the Background process limit setting examined.
It should be set to “no background processes”. If an attempt to change this value
is made it should not take effect, on re-examining of this setting “no background
processes” should again be observed. Subsequently, we can run multiple applica-
tions and to test if any of them are running in parallel, this can be accomplished
through examining the running processes list under developer tools. It can be
seen that only the last process launched is running, as such it can be confirmed
that previous processes are killed.

To evaluate the secure boot implementation, the system image must be modi-
fied in such a way that it no longer conforms to those calculated in the initial hash
tree. This task can be accomplished in various ways, from the flashing of a com-
pletely different system image, through to modification of a single byte within
the system partition and/or boot partition currently located on the device. It
should be noted that the entire image is not verified on boot, instead each block is
verified on access. In this way boot times are reduced while the system and boot
images are effectively secured. As such, if alteration of a single byte is selected
it may be useful to target a byte within a particular system application, so that
this application can be launched and the security feature reliably triggered.

It should be noted that if the boot image is modified the device will fail to
boot and the device will be rendered near-permanently inoperable, this is by
design. Recovery from this state during testing required the use of a non-public
exploit. As such, it is suggested that during third party validation the system
image be altered rather than the boot partition, in order to preserve device
functionality.

5 Results

The Controlled Access Prototype was subjected to a number of tests to evaluate
its suitability. These tests were described in Sect. 4. The results of the tests



Controlled Android Application Execution for the IoT Infrastructure 23

Table 1. Details of alterations to system and boot images with details of event to
trigger read and associated result

Alteration made Triggering event Observed result

Replace entire system image
(zeros)

Power on device Fail to boot

Replace entire system image
(random)

Power on device Fail to boot

Change single byte of system
image (within application)

Launch application Displays security warning

Change single byte of system
image (at random)

Read random byte Displays security warning

Replace entire boot image
(zeros)

Power on device Fail to boot

Replace entire boot image
(random)

Power on device Fail to boot

Change single byte of boot
image (within boot code)

Power on device Fail to boot

against the secure boot process are included in Table 1. It was observed that
under almost all experimental conditions, the resulting image failed to boot
once modified. This aligns with the expectations of the research. It is interesting
to note that modifying a single byte of the system image, either at random, or
from within an application, only caused an error to be displayed. The system
otherwise functioned as normal.

The execution state testing involved using applications in the Android OS’
single process mode. The outcomes of these tests are included below in Table 2.
For the test to pass, any IPC calls from the malicious application could not be
completed successfully (i.e. the calls were prevented).

It can be seen from the results that the IPC calls were able to successfully
complete in all of the tested scenarios, indicating that the tests unanimously
failed. The reason this approach does not work can be attributed to the archi-
tecture that Android uses to manage processes for applications. The application
closing does not inherently mean that the process has been terminated (depicted
in Fig. 2). Even in the single process mode (depicted in Fig. 2(b)), the applica-
tion’s memory is serialised upon termination and can be resumed by deserial-
isation upon relaunch. This means that although the malware may be halted
temporarily during application switching, it will resume its operations when the
context of execution changes back to the host application. The processing models
are demonstrated in Fig. 2.
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Table 2. Details of execution state testing with result, during prior to each test the
evaluation application is launched

Test performed Triggering event Observed result

Examine process list Launch malicious app Evaluation app not
running

Examine process list Launch malicious service Evaluation app not
running

Attempt IPC call Activate IPC from malicious app
to evaluation app

IPC call succeeds
(failed test)

Attempt activity call Activate activity from malicious
app to evaluation app

activity call
succeeds (failed test)

Attempt broadcast call Activate broadcast from malicious
app to evaluation app

Broadcast received
(failed test)

Fig. 2. An abstract model demonstrating the differences between the operations of the
Android OS’ default multi-processing model, and the developer option enabled single
process model.
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6 Conclusions

This research set out with the aim of determining whether an Android device
could be configured to prevent malware from executing in parallel with trusted
applications, and whether the system image could be protected from unautho-
rised modifications. As Android devices are increasingly being used as controllers
in IoT infrastructure, the mitigation and prevention of malware on these plat-
forms is critical. We presented a prototype scheme for meeting the above require-
ments in the proposed Controlled Access Prototype. This prototype succeeded in
preventing unauthorised modification to the system image through the imple-
mentation of the dm-verity kernel feature. However, the prototype failed to pre-
vent unauthorised IPC calls when in single process mode. This research provides
an opportunity for future work. We suggest modification of the Android sandbox
to prevent IPC from running blacklisted or non-whitelisted applications. This
would effectively enable an OS-level firewall for Android devices.
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