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Abstract. This paper proposes an anomaly detection framework that
utilizes key performance indicators (KPIs) and traffic measurements to
identify in real-time misbehaving mobile devices that contribute to sig-
naling overloads in cellular networks. The detection algorithm selects the
devices to monitor and adjusts its own parameters based on KPIs, then
computes various features from Internet traffic that capture both sudden
and long term changes in behavior, and finally combines the information
gathered from the individual features using a random neural network in
order to detect anomalous users. The approach is validated using data
generated by a detailed mobile network simulator.
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1 Introduction

The number of smart mobile devices which require constant access to the Inter-
net has grown exponentially in recent years, placing significant pressure on the
data and signaling infrastructures of service providers. While mobile network
operators are able to cope with the growth in user traffic by increasing capacity,
overloads in the signaling plane are often unpredictable and lead to performance
degradation and even outages. Thus, there has been considerable interest from
standardization bodies, operators and equipment vendors in addressing mobile
signaling storms, particularly with the advent of machine to machine (M2M) and
Internet of Things (IoT) whose traffic profiles can be resource-inefficient. Initial
attempts have focused on developing new standards for M2M communications
[1], and promoting best practices for developing network-friendly applications or
optimizing network configurations [5,8,16,18].

This paper presents a random neural network (RNN) [11,12] based approach
for detecting mobile devices that generate excessive radio resource control (RRC)
signaling, without directly monitoring the control plane itself. In contrast to sig-
naling based techniques [7,13], which can be more effective but require modi-
fication to cellular network equipment and/or protocols, the present approach
captures packets at the edge of the mobile core network using standard switch
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technologies (e.g. port mirroring, fibre taps, etc.). This offers the advantages of
not requiring to decode lower radio related layers, lack of network encryption,
and fewer number of nodes to monitor [23]. Moreover, the detector relies mainly
on timestamps and packet header information to classify users, and does not
require knowledge of the application generating a packet nor its service type,
eliminating the need to use a commercial deep packet inspection tool which
results in considerable overhead for real-time detection. It also interacts with
existing network management and monitoring systems to reduce computational
overhead, storage requirements and false alarm rate. We use supervised learning
to distinguish between normal and anomalous signaling behaviors, which is well
suited for classifying known patterns such as signaling storms whose character-
istics and root causes are well understood [3,4,9,15].

The rest of the paper is structured as follows. Sections 1.1 and 1.2 discuss
related work and the RNN as applied to our problem. Section 2 presents the
detection system, along with a description of its input features and the para-
meters that can influence its performance. In Sect. 3, we evaluate our detection
mechanism using simulations. Finally, we summarize our findings in Sect. 4.

1.1 Related Work

Mobile networks are subject to RRC-based signaling storms, which occur when
a large number of mobiles make successive connection requests that time-out
because of inactivity, overloading the control plane of the network [3,15] and
draining the mobile devices’ batteries [9]. This type of misbehavior can be trig-
gered by poorly designed applications and M2M systems, outages in mobile cloud
services or malicious activities, and it is difficult to recognize using traditional
DDoS detection systems because of the low traffic volume nature of the attack.

Online detection of deliberate signaling attacks was first considered in [19],
where connection inter-setup times for each mobile are estimated from IP met-
rics in order to detect the intention of a remote host to launch an attack. A
general framework for anomaly detection was proposed in [6] based on time-
series analysis of one dimensional feature distributions. While [19] and [6] aim to
identify large scale events by aggregating and analyzing statistics from all hosts
and mobile users, respectively, we aim to identify in real-time users that are con-
tributing to a problem (i.e. signaling overload) rather than detect the problem
itself. A supervised learning approach was used in [17] to detect mobile-initiated
signaling attacks, by monitoring transmissions that trigger a radio access bearer
setup procedure, and extracting various features from the corresponding packets
relating to destination IP and port numbers, packet size, and response-request
ratio. Although we utilize similar attributes in our approach, we do not assume
knowledge of the effect that a packet has on the control plane (i.e. whether it
has triggered a connection setup procedure), thus simplifying the deployment of
our solution in operational networks.

A number of commercial solutions also started to appear in response to
recent incidents of signaling storms, and can be classified into three groups:
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(i) Anomaly detection and mitigation tools [7] similar to the approach we sug-
gested in [13]. (ii) Air interface optimization which aims to increase the number
of simultaneously connected devices in the access network; such technologies are
constantly evolving with new standards, specifications and proprietary admis-
sion/congestion control and scheduling algorithms added all the time, and our
solution operates on top of and is complimentary to them. (iii) Dedicated sig-
naling infrastructure solutions to handle the expected growth in core network
signaling pertaining to policies, charging, mobility management and other new
services offered for the first time in LTE networks; however, it is expected that
congestion management and load balancing in the core network will be less of an
issue, with the trend towards network functions virtualization that will enable
dynamic resource scaling as required by network load.

1.2 The Random Neural Network

The RNN is a biologically inspired computational model, introduced by Gelenbe
[11], in which neurons exchange signals in the form of spikes of unit amplitude.
In RNN, positive and negative signals represent excitation and inhibition respec-
tively, and are accumulated in neurons. Positive signals are canceled by negative
signals, and neurons may fire if their potential is positive. A signal may leave
neuron i for neuron j as a positive signal with probability p+ij , as a negative
signal with probability p−ij , or may depart from the network with probability di,
where

∑
j [p

+
ij + p−ij ] + di = 1. Thus, when neuron i is excited, it fires excitatory

and inhibitory signals to neuron j with rates:

w+
ij = rip

+
ij ≥ 0, w−

ij = rip
−
ij ≥ 0,

where ri = (1 − di)−1
∑

j [w
+
ij + w−

ij ]. The steady-state probability that neuron i
is excited is given by:

qi =
Λi +

∑
j qjw

+
ji

λi + ri +
∑

j qjw
−
ji

,

where Λi and λi denote the rates of exogenous excitatory and inhibitory signal
inputs into neuron i, respectively.

A gradient descent supervised learning algorithm for the recurrent RNN has
been developed in [12]. For a RNN with n neurons, the learning algorithm esti-
mates the n × n weight matrices W+ = {w+

ij} and W={w−
ij} from a training

set comprising K input-output pairs (X,Y). The set of successive inputs to the
algorithm is X = (x(1), · · · ,x(K)), where x(k) = (Λ(k),λ(k)) are the pairs of
exogenous excitatory and inhibitory signals entering each neuron from outside
the network:

Λ(k) = (Λ(k)
1 , · · · , Λ(k)

n ), λ(k) = (λ(k)
1 , · · · , λ(k)

n ).

The successive desired outputs are Y = (y(1), · · · ,y(K)), with the k-th vector
y(k) = (y(k)

1 , · · · , y
(k)
n ) whose elements y

(k)
i ∈ [0, 1] correspond to the desired out-

put values for each neuron. The training examples are presented to the network
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sequentially, and the weights are updated according to the gradient descent rule
to minimize an error function:

E(k) =
1
2

n∑

i=1

ai[q
(k)
i − y

(k)
i ]2, ai ≥ 0.

The update procedure requires a matrix inversion operation for each neuron pairs
(i, j) and input k which can be done in time complexity O(n3), or O(mn2) if m-
step relaxation method is used, and O(n2) for feed-forward networks. We use the
RNN because it has been successfully applied to several engineering problems [24]
including pattern recognition, classification and DoS attack detection [14,20],
but our detection system can work with other machine learning algorithms.

2 The Detection System

Figure 1 shows the basic architecture of the packet-switched domain of a mobile
network, along with the detection system which intercepts packets directed
to/from the gateway (i.e. Gn/S5 interface in UMTS/LTE). The user data trans-
ported over this interface are encapsulated in GTP-U (a simple IP based tunnel-
ing protocol) packets. The detector utilizes also information from the operation
support system to reduce search space and optimize performance, and produces
in real-time a list of anomalous mobiles for root cause analysis and mitigation.
The three data processing stages of the algorithm are: (i) user filtering and
parameter selection based on network configuration settings and KPIs related
to signaling load on various network components, (ii) feature generation, and (iii)
user classification with a trained RNN model. For reasons that should become
apparent, we describe these processing steps in a logical order rather than the
order in which they happen during run time.

Fig. 1. The detection system and its interactions with the elements of a mobile network.
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2.1 Online RNN Classification

The RNN-based algorithm monitors the activity of a set of mobile devices, spec-
ified by the data filter, and calculates expressive features that describe various
characteristics of the users’ behavior. Time is divided into slots, each of duration
Δ seconds, in which summary statistics of several quantities related to IP traffic
of each user are collected. The algorithm stores the most recent w set of measure-
ments, and uses them to compute the current values of the input features, i.e.
the features for time slot τ are computed from measurements obtained for time
slots τ, τ − 1, · · · , τ − (w − 1) so that the observation window of the algorithm
is W = wΔ. Let z(τ) denote a measured or calculated quantity for time slot τ ,
then the i-th input feature x

(τ)
i is obtained by applying a statistical function φi

of the following form:

x
(τ)
i = φi

(
z(τ), z(τ−1), · · · , z(τ−w−1)

)
.

Hence, by employing different operators φi on different statistics z stored for the
observation window of w slots, it is possible to capture both instantaneous and
long-term changes in the traffic profile of a user. In our experiments, we have
applied a number of simple statistical functions including:

– The mean and standard deviation of z across the entire window.
– An exponential moving average filter in which the current feature is computed

as x
(τ)
i = αx

(τ−1)
i + (1 − α)z(τ), where α is some constant 0 < α < 1 typically

close to 1, with higher values discounting older observations faster.
– Shannon entropy which measures the uncertainty or unpredictability in the

data, and is defined as x
(τ)
i = −∑τ

t=τ−w−1 pz(t) log pz(t) , where pz(t) is the
probability of observing data item z(t) within the window, which can be esti-
mated from the histogram of the data. A small entropy indicates deterministic
behavior which is often associated with signaling anomalies [10,21].

– Anomaly score based on how close the measured quantities are to a range of
values considered to be suspicious.

Once the input features for a slot have been computed, they are fused using
a trained feed-forward RNN architecture such as the one presented in Fig. 2 to
yield the final decision; the input neurons receive the features computed for the
current time slot as exogenous excitatory signals, while all exogenous inhibitory
signals are set to zero, and the output nodes correspond to the probabilities of
the input pattern belonging to any of two traffic classes (i.e. attack or normal).
The final decision about the traffic observed in the time slot is determined by
the ratio of the two output nodes, which is q14/q15 in the figure: it is classified
as attack if the ratio is greater than 1 and normal otherwise. We have used an
implementation of the RNN provided in [2].

2.2 Feature Selection

Selecting highly informative features for any classification problem is one of the
most important parts of the solution. The features that we wish to use should
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Fig. 2. The feed-forward RNN structure used for detection, with 8 input nodes, 5
hidden neurons and 2 output nodes corresponding to attack and normal traffic. The
learning algorithm processes the input training patterns in sequence and updates the
weights. The k-th training set consists of a feature vector x(k) = (Λ

(k)
1 , · · · , Λ

(k)
8 ) and

its classification y(k) = (y
(k)
14 , y

(k)
15 ) which is set to (1, ε) for attack and (ε, 1) for normal

samples, where ε � 0. All other exogenous signals are set to zero.

capture the RRC signaling dynamics of users, be easy to measure or calculate
without high computational or storage cost, and reflect both the instantaneous
and long term trends of the traffic. We extract for each mobile under observation
information related to inter-arrival times, lengths and destination IP addresses
of packets, which have been suggested previously [6,17,22] as good indicators of
signaling misbehavior:

Inter-arrival Times: RRC signaling occurs whenever the user equipment (UE)
sends or receives packets following an inactivity period that exceeds an RRC
timer. Thus, the volume of traffic exchanged by a UE does not map directly
into signaling load which is more influenced by the frequency of intermittent
transmissions. To capture this coupling between the data and RRC signaling
planes, we define a burst as a collection of packets whose inter-arrival times are
less than δ seconds, where δ is smaller than the RRC timers, typically in the
order of few seconds. Thus, for a sequence of packets whose arrival instants are
{t1, t2, · · · }, we group all packets up to the n-th arrival into a single burst, where
n = inf{i : ti − ti−1 > δ}, and then proceed in a similar manner starting from
the (n + 1)-th packet arrival. Note that a burst may not necessarily generate
signaling, even if it arrives after the time-out, due to possible network delays
that may modify inter-arrival times of packets. However, packets within a single
burst are likely not to trigger any signaling, while inter-arrival times of bursts
will be correlated with the actual signaling load generated by the UE. In this
manner, we remove any bias regarding the volume of traffic and focus on the
frequency of potentially signaling-intensive communications.

The features based on the times between bursts are then calculated as follows.
The algorithm stores the mean and standard deviation of the inter-burst times
in each slot then, using the most recent w values, it computes (i) entropy of these
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average values, (ii) moving average of the standard deviations, and (iii) moving
average of an anomaly score for the average values computed based on the RRC
timer T in the high bandwidth state. In particular, the anomaly score a(z(t))
of the average inter-burst time in slot t is set to zero when z(t) < T , reflecting
the fact that such shortly spaced bursts may not have generated many RRC
transitions; it is high when z(t) is slightly larger than T , indicating potentially
resource-inefficient bursts; and it drops quickly when z(t) is few seconds larger
than T . We obtain this effect using for example a Pareto or gamma density
functions that assert z(t) must be greater than T − ε but not too much greater
(controlled by adjusting the parameters of the density function).

Packet Size: The packet size distribution for a normal device can be markedly
different from that of a device that runs a misbehaving application. For example,
it is well-known that signaling storms can be triggered by failures in mobile cloud
services [21] or peer-to-peer networks used by VoIP applications [6]. In such
cases, the client application attempts to reconnect to its servers more frequently,
causing significant increase in the number of TCP SYN packets sent by the user.
This in turn changes the randomness associated with the size of packets, and can
be used to identify misbehaving mobiles in the event of a signaling storm. Our
algorithm computes the average size of packets sent by a UE within each slot,
and evaluates a feature based on the entropy of the most recent w measurements.

Burst Rate: Another obvious characteristic of signaling storms is the sudden
sustained rate acceleration of potentially harmful bursts generated by a mis-
behaving user. Moving average of the burst rate per slot and entropy of the
rates across the observation window are used as features in order to capture,
respectively, the frequent and repetitive nature of nuisance transmissions. Fur-
thermore, a misbehaving application may change the traffic profile of a user in
terms of the ratio of received and sent bursts (known as response ratio), as in
the case of the outage induced storm described above where many SYN packets
will not generate acknowledgments. Hence, we also use as a feature the mean of
the response ratios within the window of w slots.

Destination Address: The number of destination IP addresses for a normally
functioning mobile device can be very different from that of an attacker [17],
whether the attack originates from the mobile network due to a misbehaving
application, or from the Internet as in the case of unwanted traffic (e.g. scanning
probes, spam, etc.) reaching the mobile network [22]. In the former, the number
of destination IP addresses will be very small compared to the frequency of
bursts, while in the latter this number is high. Thus we calculate the percentage
of unique destination IP addresses contacted within each time slot, and use the
average of the most recent w values as a feature.

2.3 User Filtering and Parameter Selection

Information about the “health” of network servers is typically available to mobile
carriers in the form of KPIs, which can be fed to the algorithm to determine
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the users that should be monitored (e.g. those attached to overloaded parts of a
network). Also, using KPIs the detector can be switched off when signaling loads
are below a certain threshold, effectively eliminating the need to continuously
analyze users’ traffic. Next we summarize the parameters of the RNN algorithm
and discuss how they should be selected adaptively, based on both KPIs and
RRC settings, and how the choice of each parameter influences the performance
of the detector:

– Slot size Δ: This defines the resolution of the algorithm and the frequency
at which classification decisions are made. It should be long enough for the
measured statistical information to be significant, but not too long to make
the algorithm react slowly to attacks. In our experiments we set Δ = 1 min.

– Window size W = wΔ: This determines the amount of historical informa-
tion to be included in a classification decision. The choice of the window size
presents a trade-off between speed of detection and false alarm rate, since a
small window makes the algorithm more sensitive to sudden changes in the
traffic profile of a user, which in turn increases both detection and false alarm
rates. This trade-off can be optimized by adjusting W according to the level
of congestion in the control plane, with shorter windows for higher signaling
loads to enable the algorithm to quickly identify misbehaving UEs. The value
of w used in our experimental results is 5, but we also experimented with other
values which confirmed the aforementioned observations.

– Maximum packet inter-arrival time within a burst δ: This should be selected
based on the RRC timers, so that potentially resource-inefficient transmissions
can be tracked. In our simulations of a UMTS network, the timers in DCH
and FACH states are set to T1 = 6 s and T2 = 12 s, respectively. We have
evaluated different values of δ in 1

2 min(T1, T2) < δ < min(T1, T2), which all
led to similar detection performance, but training time drops as δ is increased
within this range.

3 Simulation Experiments

In this section, we evaluate the detection performance of our algorithm using
the mobile network simulator described in [15]. Since the impact of signaling
storms on mobile networks has been studied extensively in [3,9,15], we consider
here a small scenario with 200 UMTS UEs in an area of 2 × 2 km2 which is
covered by 7 Node Bs connected to a single radio network controller (RNC).
The core network consists of the SGSN and the GGSN which is connected to 37
Internet hosts acting as application servers, including 5 for instant messaging,
30 web servers and 2 are contacted by 100 misbehaving UEs. Half of these 100
UEs are deliberate signaling attackers that know when RRC transitions occur,
and they are used for training the RNN; the second half, used for testing, run
a malfunctioning application or operating system that sends periodic messages
whenever the user is inactive, with the transmission period set to be slightly
larger than the DCH timer in order to increase the chances of triggering state
transitions.
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The RNN provides at the end of a time slot the odds of the input features
belonging to attack behavior. Figure 3 shows the classifier output (top) and the
actual RRC state transitions (bottom) of a misbehaving UE as captured during
a simulation run. It can be observed that when the malfunctioning application
is active, the number of state transitions significantly increases, with most tran-
sitions occurring between the FACH and DCH states. This alternating behavior
causes excessive signaling load in the network, while predominantly generating
normal traffic volume, rendering traditional DoS defense techniques ineffective.
However, our detection mechanism is able to track very accurately the RRC state
transitions of the UE, and to quickly identify when excessive signaling is being
generated, although it does not directly monitor these transitions but rather
infers them from the features that we have described. One can also see that the
classifier’s output sometimes drops close to 1 during an attack epoch, which is
attributed to other normal applications generating traffic in those time instants,
thus reducing the severity of the attack. As mentioned earlier, the detection
speed and tolerance to signaling misbehavior can be adjusted by modifying the
size of the observation window.
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Fig. 3. Classifier output (top) and state transitions (bottom) for a misbehaving UE.

Next we examine in Fig. 4 how our algorithm performs when presented with
a normal user that generates moderately more state transitions than the aver-
age normal user in our simulations. Interestingly enough, the classifier outputs
a single alarm (out of 360 samples) when the corresponding state transitions
are indeed excessive. Since the anomaly detection algorithm is supposed to be
activate only when there is a signaling overload condition, such classification
decisions may not always be considered as false alarms, as the goal would be
to identify users that are causing congestion, regardless of whether they are
attacking deliberately or not.
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Fig. 4. Classifier output (top) and state transitions (bottom) for a heavy normal UE.
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Fig. 5. The accuracy of the RNN algorithm, measured as the fraction of correct deci-
sions over the activity period of 6 hours, for 50 misbehaving UEs.

Finally, Fig. 5 illustrates the accuracy of our classifier, namely the proportion
of correct decisions (both true positives and true negatives) out of all test sam-
ples. The figure shows results for 50 UEs, where each data point represents the
average of 360 classification decisions taken during the simulation experiment.
For each UE, we assume that if it generates at least 1 attack packet within a
time slot, then the corresponding output of the classifier should be larger than 1,
otherwise a false decision is declared. The results indicate an accuracy between
88 % and 98 % with an average of 93 % over the 50 test cases. This fluctuation
can be attributed to the fact that our algorithm does not classify an attack
as such until few time slots have passed, and therefore misbehaving UEs with
many silent periods will produce higher false positives; fortunately, these less
aggressive UEs will generate lower signaling load.
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4 Conclusions

This paper proposed an approach for real-time detection of signaling-intensive
mobiles based on the random neural network (RNN) [11,12]. The algorithm
relies on the analysis of IP packets at the edge of the mobile network to infer
the signaling behavior of users; therefore, it does not require changes to network
components and protocols, and can be used with standard traffic monitoring
tools. In the algorithm, summary statistics about the behavior of a mobile user
are collected and stored in a moving window at fixed time intervals (slots) and
used in order to calculate expressive features that capture both sudden and long
term changes in the user’s behavior. The features for the most recent time slot
are subsequently combined using a trained RNN to produce the final classifica-
tion decision. Through simulations, we have demonstrated the effectiveness of
the method in detecting quickly users that are causing signaling overloads in the
network. The proposed approach is flexible, providing a number of parameters
to optimize the trade-off between detection speed, accuracy and overhead. For
instance, the size of the moving window and the frequency of statistical measure-
ments (i.e. number of slots within the window) could be adjusted in real-time to
respond to network conditions or to reflect the capacity of the network to tol-
erate a specific misbehavior. Future work will investigate the scalability of the
approach both in terms of the processing power required to capture and process
packets from a central location as well as the performance implications on the
network equipment that mirrors the traffic.
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