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Abstract. Mobile Networks are subject to signaling storms launched by
misbehaving applications or malware, which result in bandwidth over-
load at the cell level and excessive signaling within the mobile operator,
and may also deplete the battery power of mobile devices. This paper
reviews the causes of signaling storms and proposes a novel technique
for storm detection and mitigation. The approach is based on counting
the number of successive signaling transitions that do not utilize allo-
cated bandwidth, and temporarily blocking mobile devices that exceed
a certain threshold to avoid overloading the network. Through a mathe-
matical analysis, we derive the optimum value of the counter’s threshold,
which minimizes both the number of misbehaving mobiles and the signal-
ing overload in the network. Simulation results are provided to illustrate
the effectiveness of the proposed scheme.
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1 Introduction

There has been significant industry interest worldwide regarding mobile signal-
ing overload or “signaling storms” which have been publicly documented in the
real world numerous times [6,10,11,15,31]. Signaling storms can be triggered by
various factors, which all lead to a large number of mobile devices making suc-
cessive connection requests that then time-out because of inactivity, triggering
repeated signaling to allocate and de-allocate radio channels and other resources
in the network.

This type of behavior on wireless networks can result in abusive bandwidth
occupancy, excessive signaling at the mobile operator [2,22], battery dissipa-
tion at mobile devices [14], and extra energy consumption in base stations and
backbone networks [17,18,34]. If mobile technology is exploited in cyber-physical
infrastructures such as the smart grid, or for the Internet of Things (IoT) includ-
ing vehicular technologies, smart homes, and emergency management systems
[20], such signaling storm effects can delay or impair communications which are
of vital importance. In IoT and machine to machine (M2M) applications, the
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massive number of devices to be supported and actions which may be synchro-
nized, require new efforts to make such networks resilient and reliable [4]. Thus
in this paper, we propose and analyze a novel approach that aims to protect cel-
lular networks against signaling storms that can be caused by mobile malware
or misbehaving applications.

1.1 Signaling Storms

The vulnerability of mobile networks to signaling denial of service (DoS) attacks
is not new. Indeed, early work has identified different ways to attack the control
plane of mobile networks, e.g. through paging [35], service requests [37] and
radio resource control (RRC) [26,33]. Poorly designed mobile applications are
perhaps one of the most common triggers of signaling overloads [6] that lead
to performance degradation and even network outages [11,15]. Such “chatty”
applications constantly poll the network, even when users are inactive, in order
to provide always-on connectivity, background updates [29] and in-application
advertisements [10]. Similar problems have been reported with M2M systems
that transmit small amounts of data with deterministic intervals [1,25,36]. A
common issue with those applications is that developers are not familiar with the
control plane of mobile networks, so they build applications without considering
their adverse effect on the networks. This has prompted the mobile industry to
promote best practices for developing network-friendly applications [7,13,23,24].

Industry guidelines, however, do not provide adequate protection against
signaling storms which can be triggered by well-designed applications, when
an unexpected event occurs in the Internet. Examples of such events include
outages in mobile cloud services [8,31] and in VoIP peer-to-peer networks [9].
During those incidents, a large number of mobile devices attempt to recover
connectivity to the application servers, generating significantly more keep-alive
messages [5] and an unexpectedly high signaling load in the process.

In addition, signaling storms may occur as a by-product of malicious activity
that is not intended to cause a signaling DoS attack. The perpetrators in many of
those incidents rely on the Internet to carry out profitable attacks, and therefore
it is against their interest to cause disruption in the access to the infrastructure.
Examples of such scenarios include: (i) Large-scale malware infections with fre-
quent communications, such as premium SMS dialers, spammers, adware and
bot-clients, which are among the top encountered threats on smartphones [28]
and have been shown [27] to exhibit resource-inefficient communication patterns.
(ii) Unwanted traffic in the Internet [32], including backscatter noise from remote
DoS attacks, scanning worms, and spam campaigns, which pose a risk to mobile
networks that can be eliminated using middleboxes, but is often not due to car-
riers’ policies [30,38]. (iii) Network outages due to cyber-attacks which could be
followed (and hence prolonged) by a signaling storm, due to the large number
of user devices that will attempt to reconnect after the service is restored [12].
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2 The Model

We represent the set of normal and malicious mobile calls in the system at time
t by a state s(t) = (b,B,C,A1, a1, ..., Ai, ai, ...; t) where:

– b is the number of mobiles which are in low bandwidth mode,
– B is the number of normal mobiles which are in high bandwidth mode,
– C is the number of normal mobiles that have started to transfer or receive

data or voice in high bandwidth mode,
– Ai is the number of attacking mobiles which are in high bandwidth mode and

have undergone a time-out for i − 1 times,
– ai is the number of attacking mobiles which have entered low bandwidth mode

from high bandwidth mode after i time-outs.

We assume a Poisson arrival process of rate λ of new mobile activations or calls,
and a call that is first admitted in state b then requests high bandwidth at rate r.
Note that r−1 can be viewed as the average time it takes a call to make its first
high bandwidth request to the network. With probability ᾱ = 1 − α such a call
will be of normal type and will enter state B, while with probability α it will
be an attacking call and will request high bandwidth and hence enter state A1

indicating the first request for bandwidth that is made by a defectively operating
application or malware that can contribute to a storm. Thus, α is a metric that
represents the fraction of all activations that are attacking or mobiles which
contain malware or a deficient application.

Once a call enters state A1, since it is misbehaving, it will not start a com-
munication and will time-out after some time of average value τ−1. Note that
the time-out is a parameter that is set by the operator for all the mobile devices
so that they will not occupy the high bandwidth mode if they are actually not
making use of it, and in practice it is of the order of a few seconds. After entering
state a1, the call may be detected as being anomalous, and will be removed or
blocked from the system at rate β1, where β−1

1 is the average time it takes the
detector to identify that this call has the potential to contribute to a storm, and
to block the device from making further connections. However, it is very unlikely
that the system is so smart that it can make this decision correctly regarding
the call so early in the game, so typically β1 � 0 and the call will manage to
request high bandwidth and then enter state A2 at rate r. Proceeding in the
same manner, in state Ai the anomalous call will again not start a normal com-
munication, so it will eventually time-out after an average time τ and enter state
ai, and so on.

Now with regard to normal calls, a normally operating mobile in high band-
width mode B may transition to the communicating mode C at rate κ, signifying
that transmission or reception has started, or it will transition back to the low
bandwidth mode at a rate τ that signifies a time-out. From state C the call’s
activity may be interrupted, as when a mobile device stops sending or receiving
data to/from a web site, in which case the call will return to state B at rate μ.
Similarly, the call may end at rate δ, leaving the system. The parameters κ, μ
and δ can represent a wide range of normal mobile usage patterns. For example,
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Table 1. State transitions in the model.

Transition Rate Cause

b → b + 1 λ network activation (attach)

(b, B) → (b − 1, B + 1) brᾱ new normal call

(B, C) → (B − 1, C + 1) Bκ start sending or receiving traffic

(b, B) → (b + 1, B − 1) Bτ time-out for a normal call

C → C − 1 Cδ end of a normal call

(B, C) → (B + 1, C − 1) Cμ stop sending or receiving traffic

(b, A1) → (b − 1, A1 + 1) brα new attack call

(ai−1, Ai) → (ai−1 − 1, Ai + 1) ai−1r i-th superfluous transition of an attack call, i > 1

(ai, Ai) → (ai + 1, Ai − 1) Aiτ i-th time-out of an attack call, i ≥ 1

ai → ai − 1 aiβi attack call blocked after i time-outs, i ≥ 1

a web browsing session or call normally lasts for several minutes or even hours
(thus δ is typically very small), but may include several downloading and read-
ing times, with mean of μ−1 and κ−1, respectively; in this case, the time-out
operates only while the user is reading, taking the state from B to b.

With the above assumptions, Table 1 shows the possible transitions from
the state s(t). Note that all of the state transitions which are not indicated in
the table are simply the ones where the state is unchanged, and furthermore
note that apart from the first case, the state transition rates are population
dependent.

Assuming that all the rates that are indicated are the parameters of inde-
pendent and identically distributed exponential random variables, and that the
probability α corresponds to successively independent and identically distrib-
uted events, the above model has an exact equilibrium solution [16,19] that can
be easily calculated, and thus can provide the joint probability distribution of
the state s(t). However the rate parameters r and μ are actually congestion
dependent. This means that they will essentially dependent on the number of
calls in each of the states because for a total amount of bandwidth in the system
at a base station level of say W , the total amount of bandwidth available may
be expressed as some value W ∗ = W − w1(b +

∑
i ai) − w2(B +

∑
i Ai) − w3C

where w1, w2 and w3 denote the bandwidth allocated per low bandwidth, inac-
tive high bandwidth and active high bandwidth requests, respectively. Thus in
reality the rate r will be “slowed down” as W ∗ becomes smaller since requests
will be delayed or will even remain unsatisfied. The matter is of course more
complex, because not only the bandwidth allocation itself but the error proba-
bilities in the channel will be affected by the amount of bandwidth that is already
allocated and thus the channel holding time μ−1 will also depend on W ∗.

A schematic diagram of the model is presented in Fig. 1(a), showing the
states s(t) ∈ {b,B,C, a1, A1, . . . , ai, Ai, . . .}, possible transitions, and rates at
which each of the calls in one state will transition to another state. Assuming
that the transition rates r and μ do not depend on the number of mobiles that are
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Fig. 1. (a) A schematic diagram of the state transition model for the number of normal
and attacking calls in the network. (b) An M/M/∞ queueing representation of a node
j with arrival rate x and transition rates (for each of the calls in j) y and z; the ratios
y/(y + z) and z/(y + z) denote the transition probabilities from state j

using the bandwidth, calls act independently of each other so that the evolution
of the number of calls in any of the states can be represented by an equivalent
M/M/∞ queueing model as shown in Fig. 1(b).

2.1 Traffic Equations and Equilibrium Probability Distribution

The arrival rate of calls into each of the possible states may be written as Λj

where j ∈ {b,B,C,A1, a1, ..., Ai, ai, ...} which satisfy a system of linear equa-
tions. Specifically, the rates at which calls enter the attack states are simply:

Λai
= ΛAi

,

ΛA1 = αΛb,

ΛAi
= Λai−1

r

r + βi−1
= αΛb

i−1∏

l=1

r

r + βl
, i > 1 (1)

where Λb is the rate at which calls enter state b which is calculated as follows.
The rates at which calls enter the normal operating states are described by the
linear equations:

Λb = λ +
τ

τ + κ
ΛB ,

ΛB = (1 − α)Λb +
μ

μ + δ
ΛC ,

ΛC =
κ

κ + τ
ΛB , (2)

so that ΛB = γΛb, where γ = 1−α
1− μκ

(μ+δ)(κ+τ)
, and:
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Λb =
λ

1 − τ
τ+κγ

=
λ

1 − τ(1−α)
τ+κ− μκ

μ+δ

, ΛB =
λγ

1 − τ
τ+κγ

, ΛC =
κλγ

κ + τ(1 − γ)
. (3)

Since we assume that the transition rates r and μ do not depend on the
number of mobiles in the system, calls act independently of each other so that
the average number of calls in each of the states is the average arrival rate of
calls into the state, multiplied by the average time spent by a call in that state.
We will present here only results for the attacking states, since we are interested
in mitigating the storm. We first note that the average time spent by a mobile
in state ai is (r + βi)−1 and in Ai is τ−1, so that the average number of mobiles
in equilibrium Nj in each of the attacking states becomes:

NA1 =
αΛb

τ
,

NAi
=

αΛb

τ

i−1∏

l=1

r

r + βl
, i > 1,

Nai
=

αΛb

r + βi

i−1∏

l=1

r

r + βl
, i ≥ 1. (4)

As a consequence, the total average number of malicious calls becomes:

Nα =
∞∑

i=1

[Nai
+ NAi

] = αΛb

∞∑

i=1

[
(
1
τ

+
1

r + βi
)

i−1∏

l=1

r

r + βl

]
. (5)

2.2 Optimum Counter for Mitigation

Although choosing a relatively small value of the time-out of the order of a
few seconds can be useful, we see that some additional mechanism needs to be
inserted to mitigate the effect of signaling storms. Therefore we suggest that a
counter value n be selected so that as long as the number of successive times that
the mobile uses the time-out is less than n, then the mobile remains attached
to the network. However as soon as this number reaches n, then the mobile is
detached after a time of average value β−1. Thus β−1 can be viewed as the
decision time plus the physical detachment time that is needed.

A large value of n will improve the chances of correctly detecting a misbe-
having mobile user, providing the system with full confidence to activate the
mitigation policy. If n is small we may have false positives, requiring analysis of
the users behavior with other ongoing connections, or checking some data plane
attributes such as destination IP addresses or port numbers that may be associ-
ated with malicious activities. Thus the higher the n, the faster the decision can
be to disconnect the mobile, i.e. β increases with the threshold n, with a slope
or derivative with respect to n expressed as β

′
.

Based on this principle, and with reference to our earlier definition of βi, we
have:

βi =
{

0, 1 ≤ i < n,
β(n), i ≥ n

(6)
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so that storm mitigation is activated when high bandwidth is requested n succes-
sive times, each followed by a time-out. Using the previous analysis, the average
number of malicious calls becomes:

Nα = αΛb[(n − 1 +
r

β
)(

1
τ

+
1
r
) +

1
τ

] (7)

while the resulting signaling load from the attack is given by the total rate of
malicious transitions between low and high bandwidth states:

Λα = αΛb +
∞∑

i=1

[Λai
+ ΛAi

] = αΛb[2n + 1 +
2r

β
] (8)

With some further simple analysis we can show that the value n∗ that minimizes
both Nα and Λα, is the value that satisfies:

β(n∗)2 ≈ r.β
′
(n∗). (9)

As an example, consider a detection rate that increases linearly with the thresh-
old according to β(n) = mn, m > 0. In this case, the optimum value of the
counter’s threshold is obtained by solving the quadratic equation m2n2 = rm
which yields:

n∗ =
√

r/m.

We see that n∗ decreases with m, which means that the optimum threshold
becomes smaller when the network is more able (i.e. larger m) to detect malicious
connections using data plane attributes. This simple example illustrates how the
proposed counter-based approach can be optimized when deployed in conjunc-
tion with detection systems [3] that analyze IP packets to identify attacks.

3 Simulation Experiments

In this section we evaluate the performance of the joint detection and mitigation
approach that we have proposed using the mobile network simulator described in
[21,22]. We illustrate how the proposed scheme allows quick reaction to malicious
signaling behaviors or to malfunctioning applications, by showing the temporal
behavior of network signaling load and delay during normal operation and then
during an attack which is being detected and mitigated with our approach.
However, we have not addressed the problem of how to set the parameters of
the mathematical model based on the average mobile user profile and network
configurations, so as to optimize the counter’s threshold using Eq. (9); we leave
this issue for future work.

The results that we present were obtained by simulating 500 mobile devices,
each running the detection and mitigation mechanism, in an area of 2 × 2 km2

which is covered by 7 UMTS base stations connected to a single radio network
controller (RNC). All mobiles join the network at the beginning of the simulation,
and generate web browsing traffic following a model based on industry recom-
mendations and web metrics released by Google. We assume 20 % of the mobiles
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are malicious or compromised, which overload the RNC by causing superfluous
promotions to the high bandwidth DCH state. The service times in the RNC
have been artificially increased in order to simulate overload conditions with a
small number of mobiles.

In Fig. 2, the signaling misbehavior starts gradually between 2800 and 4000 s
from the beginning of the simulation, rather than suddenly, in order to prevent
artifacts such as a huge spike of signaling load due to many devices attacking at
the same time. Also, for the purpose of showing the effect of the storm and the
proposed countermeasure, we activate the mitigation mechanism at 7000 s.
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Fig. 2. Simulation results: (a) total signaling load at the RNC, and (b) application
response time. The mitigation mechanism is activated at 7000 s to allow the storm to
develop and to show the effectiveness of the approach. The counter’s threshold was set
experimentally to n = 3 based on performance.

Figure 2(a) shows the number of signaling messages sent and received per sec-
ond by the RNC as captured during a simulation run. The application response
time at a normal mobile is shown in Fig. 2(b), which is the duration between
when the user requests a web page and when all of the web page is received.
The results are obtained by using an averaging window of size 50 s. It can be
observed that the signaling load increases significantly as a result of the attack,
which in turn increases the time it takes for a mobile to acquire a radio channel
to send and receive data, leading to higher latency and jitter. However, the pro-
posed detection and mitigation scheme is able to quickly identify and mitigate
the attack, effectively recovering the average response time for the normal users
to the level they had before the storm.

4 Conclusions

Mobile operators have recently experienced an exponential growth in mobile
data traffic, coupled with a greater surge in signaling loads which degrade the
quality of service for users. These signaling storms will continue to pose chal-
lenges to operators, especially with the expected wide deployment of M2M and
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IoT applications over cellular networks, due to the massive number of devices to
be supported, the fact that those devices may act in a synchronized manner, and
the absence of the human-in-the-loop in most applications. As the demand for
always-on connectivity increases from mobile and M2M applications, signaling
storms can become a significant show stopper, particularly from the perspective
of the response time requirements of applications, hence underscoring the need
for new approaches to make networks more resilient and reliable.

Thus we have suggested a novel mitigation approach for signaling storms, that
maintains a counter for each active mobile device, either within the device or at
the network signaling server. If the counter exceeds a certain threshold, indicat-
ing excessive radio resource control requests, the mobile device is temporarily
blocked to avoid overloading the signaling plane. We developed a mathemati-
cal model which examines the role of the time-out and computes the counter’s
threshold that minimizes both signaling load and number of misbehaving devices.
Simulation results illustrate these behaviors, showing that the counter-based
technique restores the signaling load and application response times to their
values before the storm began.
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